终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    专题08 高等背景下概率论的新定义(七大题型)-2024年新高考数学突破新定义压轴题综合讲义

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题08 高等背景下概率论的新定义(七大题型)(原卷版).docx
    • 解析
      专题08 高等背景下概率论的新定义(七大题型)(解析版).docx
    专题08 高等背景下概率论的新定义(七大题型)(原卷版)第1页
    专题08 高等背景下概率论的新定义(七大题型)(原卷版)第2页
    专题08 高等背景下概率论的新定义(七大题型)(原卷版)第3页
    专题08 高等背景下概率论的新定义(七大题型)(解析版)第1页
    专题08 高等背景下概率论的新定义(七大题型)(解析版)第2页
    专题08 高等背景下概率论的新定义(七大题型)(解析版)第3页
    还剩13页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题08 高等背景下概率论的新定义(七大题型)-2024年新高考数学突破新定义压轴题综合讲义

    展开

    这是一份专题08 高等背景下概率论的新定义(七大题型)-2024年新高考数学突破新定义压轴题综合讲义,文件包含专题08高等背景下概率论的新定义七大题型原卷版docx、专题08高等背景下概率论的新定义七大题型解析版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
    一、注意基础知识的整合、巩固。二轮复习要注意回归课本,课本是考试内容的载体,是高考命题的依据。浓缩课本知识,进一步夯实基础,提高解题的准确性和速度
    二、查漏补缺,保强攻弱。在二轮复习中,对自己的薄弱环节要加强学习,平衡发展,加强各章节知识之间的横向联系,针对“一模”考试中的问题要很好的解决,根据自己的实际情况作出合理的安排。
    三、提高运算能力,规范解答过程。在高考中运算占很大比例,一定要重视运算技巧粗中有细,提高运算准确性和速度,同时,要规范解答过程及书写。
    四、强化数学思维,构建知识体系。同学们在听课时注意把重点要放到理解老师对问题思路的分析以及解法的归纳总结,以便于同学们在刷题时做到思路清晰,迅速准确。
    五、解题快慢结合,改错反思。审题制定解题方案要慢,不要急于解题,要适当地选择好的方案,一旦方法选定,解题动作要快要自信。
    六、重视和加强选择题的训练和研究。对于选择题不但要答案正确,还要优化解题过程,提高速度。灵活运用特值法、排除法、数形结合法、估算法等。
    专题08 高等背景下概率论的新定义
    【题型归纳目录】
    题型一:切比雪夫不等式
    题型二:马尔科夫链
    题型三:卡特兰数
    题型四:概率密度函数
    题型五:二维离散型随机变量
    题型六:多项式拟合函数
    题型七:最大似然估算
    【典型例题】
    题型一:切比雪夫不等式
    【典例1-1】(2024·浙江·二模)某工厂生产某种元件,其质量按测试指标划分为:指标大于或等于82为合格品,小于82为次品,现抽取这种元件100件进行检测,检测结果统计如下表:
    (1)现从这100件样品中随机抽取2件,若其中一件为合格品,求另一件也为合格品的概率;
    (2)关于随机变量,俄国数学家切比雪夫提出切比雪夫不等式:
    若随机变量X具有数学期望,方差,则对任意正数,均有成立.
    (i)若,证明:;
    (ii)利用该结论表示即使分布未知,随机变量的取值范围落在期望左右的一定范围内的概率是有界的.若该工厂声称本厂元件合格率为90%,那么根据所给样本数据,请结合“切比雪夫不等式”说明该工厂所提供的合格率是否可信?(注:当随机事件A发生的概率小于0.05时,可称事件A为小概率事件)
    【典例1-2】(2024·吉林长春·模拟预测)概率论中有很多经典的不等式,其中最著名的两个当属由两位俄国数学家马尔科夫和切比雪夫分别提出的马尔科夫(Markv)不等式和切比雪夫(Chebyshev)不等式.马尔科夫不等式的形式如下:
    设为一个非负随机变量,其数学期望为,则对任意,均有,
    马尔科夫不等式给出了随机变量取值不小于某正数的概率上界,阐释了随机变量尾部取值概率与其数学期望间的关系.当为非负离散型随机变量时,马尔科夫不等式的证明如下:
    设的分布列为其中,则对任意,,其中符号表示对所有满足的指标所对应的求和.
    切比雪夫不等式的形式如下:
    设随机变量的期望为,方差为,则对任意,均有
    (1)根据以上参考资料,证明切比雪夫不等式对离散型随机变量成立.
    (2)某药企研制出一种新药,宣称对治疗某种疾病的有效率为.现随机选择了100名患者,经过使用该药治疗后,治愈的人数为60人,请结合切比雪夫不等式通过计算说明药厂的宣传内容是否真实可信.
    【变式1-1】(2024·高三·湖北·阶段练习)随机变量的概念是俄国数学家切比雪夫在十九世纪中叶建立和提倡使用的.切比雪夫在数论、概率论、函数逼近论、积分学等方面均有所建树,他证明了如下以他名字命名的离散型切比雪夫不等式:设为离散型随机变量,则,其中为任意大于0的实数.切比雪夫不等式可以使人们在随机变量的分布未知的情况下,对事件的概率作出估计.
    (1)证明离散型切比雪夫不等式;
    (2)应用以上结论,回答下面问题:已知正整数.在一次抽奖游戏中,有个不透明的箱子依次编号为,编号为的箱子中装有编号为的个大小、质地均相同的小球.主持人邀请位嘉宾从每个箱子中随机抽取一个球,记从编号为的箱子中抽取的小球号码为,并记.对任意的,是否总能保证(假设嘉宾和箱子数能任意多)?并证明你的结论.
    附:可能用到的公式(数学期望的线性性质):对于离散型随机变量满足,则有.
    题型二:马尔科夫链
    【典例2-1】(2024·高三·全国·专题练习)马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,为状态空间中经过从一个状态到另一个状态的转换的随机过程.该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关.甲、乙两口袋中各装有1个黑球和2个白球,现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复进行次这样的操作,记口袋甲中黑球的个数为,恰有1个黑球的概率为.
    (1)求的值;
    (2)求的值(用表示);
    (3)求证:的数学期望为定值.
    【典例2-2】(2024·高三·贵州黔西·阶段练习)马尔科夫链是概率统计中的一个重要模型,因俄国数学家安德烈·马尔科夫得名,其过程具备“无记忆”的性质,即第次状态的概率分布只跟第次的状态有关,与第,,,…次状态无关,即.已知甲盒子中装有2个黑球和1个白球,乙盒子中装有2个白球,现从甲、乙两个盒子中各任取一个球交换放入另一个盒子中,重复次这样的操作.记甲盒子中黑球个数为,恰有2个黑球的概率为,恰有1个黑球的概率为.
    (1)求,和,;
    (2)证明:为等比数列(且);
    (3)求的期望(用表示,且).
    【变式2-1】(2024·浙江杭州·二模)马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是…,,,,,…,那么时刻的状态的条件概率仅依赖前一状态,即.
    现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.
    假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:一种是手中赌金为0元,即赌徒输光;一种是赌金达到预期的B元,赌徒停止赌博.记赌徒的本金为,赌博过程如下图的数轴所示.
    当赌徒手中有n元(,)时,最终输光的概率为,请回答下列问题:
    (1)请直接写出与的数值.
    (2)证明是一个等差数列,并写出公差d.
    (3)当时,分别计算,时,的数值,并结合实际,解释当时,的统计含义.
    题型三:卡特兰数
    【典例3-1】(2024·湖北·二模)五一小长假到来,多地迎来旅游高峰期,各大旅游景点都推出了种种新奇活动以吸引游客,小明去成都某熊猫基地游玩时,发现了一个趣味游戏,游戏规则为:在一个足够长的直线轨道的中心处有一个会走路的机器人,游客可以设定机器人总共行走的步数,机器人每一步会随机选择向前行走或向后行走,且每一步的距离均相等,若机器人走完这些步数后,恰好回到初始位置,则视为胜利.
    (1)若小明设定机器人一共行走4步,记机器人的最终位置与初始位置的距离为步,求的分布列和期望;
    (2)记为设定机器人一共行走步时游戏胜利的概率,求,并判断当为何值时,游戏胜利的概率最大;
    (3)该基地临时修改了游戏规则,要求机器人走完设定的步数后,恰好第一次回到初始位置,才视为胜利.小明发现,利用现有的知识无法推断设定多少步时获得胜利的概率最大,于是求助正在读大学的哥哥,哥哥告诉他,“卡特兰数”可以帮助他解决上面的疑惑:将个0和个1排成一排,若对任意的,在前个数中,0的个数都不少于1的个数,则满足条件的排列方式共有种,其中,的结果被称为卡特兰数.若记为设定机器人行走步时恰好第一次回到初始位置的概率,证明:对(2)中的,有
    【典例3-2】(2024·全国·模拟预测)卡特兰数是组合数学中一个常在各种计数问题中出现的数列.以比利时的数学家欧仁·查理·卡特兰(1814-1894)命名.历史上,清代数学家明安图(1692年-1763年)在其《割圜密率捷法》最早用到“卡特兰数”,远远早于卡塔兰.有中国学者建议将此数命名为“明安图数”或“明安图-卡特兰数”.卡特兰数是符合以下公式的一个数列:且.如果能把公式化成上面这种形式的数,就是卡特兰数.卡特兰数是一个十分常见的数学规律,于是我们常常用各种例子来理解卡特兰数.比如:在一个无穷网格上,你最开始在上,你每个单位时间可以向上走一格,或者向右走一格,在任意一个时刻,你往右走的次数都不能少于往上走的次数,问走到,0≤n有多少种不同的合法路径.记合法路径的总数为
    (1)证明是卡特兰数;
    (2)求的通项公式.
    题型四:概率密度函数
    【典例4-1】(2024·高二·湖南·课后作业)李明上学有时坐公交车,有时骑自行车,他各记录了50次坐公交车和骑自行车所花的时间(样本数据),经数据分析得到如下结果:
    坐公交车:平均用时30min,方差为36
    骑自行车:平均用时34min,方差为4
    (1)根据以上数据,李明平时选择哪种交通方式更稳妥?试说明理由.
    (2)分别用X和Y表示坐公交车和骑自行车上学所用的时间,X和Y的概率密度曲线如图(a)所示,如果某天有38min可用,你应选择哪种交通方式?如果仅有34min可用,又应该选择哪种交通方式?试说明理由.
    (提示:(2)中X和Y的概率密度曲线分别反映的是X和Y的取值落在某个区间的随机事件的概率,例如,图(b)中阴影部分的面积表示的就是X取值不大于38min时的概率.)
    【典例4-2】(2024·高二·安徽·期末)设随机变量X的概率密度函数为,则,若对X的进行三次独立的观测,事件至少发生一次的概率为;
    (1)对X做n次独立重复的观测,若使得事件A至少发生一次的概率超过95%,求n的最小值.(,)
    (2)为满足广大人民群众对接种疫苗的需求,某地区卫生防疫部门为所辖的甲、乙、丙三区提供了批号分别为1、2、3、4、5的五批次新冠疫苗以供选择,要求每个区只能从中选择一个批号的疫苗接种.由于某些原因甲区不能选择1、2、4号疫苗,且这三区所选批号互不影响.记“甲区选择3号疫苗”为事件B,且;
    ①求三个区选择的疫苗批号互不相同的概率;
    ②记甲、乙、丙三个区选择的疫苗批号最大数为K,求K的分布列.
    题型五:二维离散型随机变量
    【典例5-1】(2024·高三·湖北·阶段练习)设的所有可能取值为,称()为二维离散随机变量的联合分布列,用表格表示为:
    仿照条件概率的定义,有如下离散随机变量的条件分布列:定义,对于固定的,若,则称为给定条件下的条件分布列.
    离散随机变量的条件分布的数学期望(若存在)定义如下:.
    (1)设二维离散随机变量的联合分布列为
    求给定条件下的条件分布列;
    (2)设为二维离散随机变量,且存在,证明:;
    (3)某人被困在有三个门的迷宫里,第一个门通向离开迷宫的道,沿此道走30分钟可走出迷宫;第二个门通一条迷道,沿此迷道走50分钟又回到原处;第三个门通一条迷道,沿此迷道走70分钟也回到原处.假定此人总是等可能地在三个门中选择一个,试求他平均要用多少时间才能走出迷宫.
    【典例5-2】(2024·山东潍坊·一模)若,是样本空间上的两个离散型随机变量,则称是上的二维离散型随机变量或二维随机向量.设的一切可能取值为,,记表示在中出现的概率,其中.
    (1)将三个相同的小球等可能地放入编号为1,2,3的三个盒子中,记1号盒子中的小球个数为,2号盒子中的小球个数为,则是一个二维随机变量.
    ①写出该二维离散型随机变量的所有可能取值;
    ②若是①中的值,求(结果用,表示);
    (2)称为二维离散型随机变量关于的边缘分布律或边际分布律,求证:.
    【变式5-1】(2024·江苏常州·一模)设是一个二维离散型随机变量,它们的一切可能取的值为,其中,令,称是二维离散型随机变量的联合分布列,与一维的情形相似,我们也习惯于把二维离散型随机变量的联合分布列写成下表形式;
    现有个球等可能的放入编号为的三个盒子中,记落入第1号盒子中的球的个数为,落入第2号盒子中的球的个数为.
    (1)当时,求的联合分布列,并写成分布表的形式;
    (2)设且,求的值.
    (参考公式:若,则)
    题型六:多项式拟合函数
    【典例6-1】(2024·甘肃·一模)下表是2017年至2021年连续5年全国研究生在学人数的统计表:
    (1)现用模型作为回归方程对变量与的关系进行拟合,发现该模型的拟合度很高.请计算该模型所表示的回归方程(与精确到0.01);
    (2)已知2021年全国硕士研究生在学人数约为267.2万人,某地区在学硕士研究生人数占该地在学研究生的频率值与全国的数据近似.当年该地区要在本地区在学研究生中进行一项网络问卷调查,每位在学研究生均可进行问卷填写.某天某时段内有4名在学研究生填写了问卷,X表示填写问卷的这4人中硕士研究生的人数,求X的分布列及数学期望.
    参考公式及数据:对于回归方程
    【典例6-2】(2024·安徽·一模)碳中和,是指企业、团体或个人测算在一定时间内,直接或间接产生的温室气体排放总量,通过植树造林、节能减排等形式,抵消自身产生的二氧化碳排放,实现二氧化碳的“零排放”.碳达峰,是指碳排放进入平台期后,进入平稳下降阶段.简单地说就是让二氧化碳排放量“收支相抵”.中国政府在第七十五届联合国大会上提出:“中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和.”减少碳排放,实现碳中和,人人都可出一份力.某中学数学教师组织开展了题为“家庭燃气灶旋钮的最佳角度”的数学建模活动.实验假设:
    ①烧开一壶水有诸多因素,本建模的变量设定为燃气用量与旋钮的旋转角度,其他因素假设一样;
    ②由生活常识知,旋转角度很小或很大,一壶水甚至不能烧开或造成燃气浪费,因此旋转角度设定在10°到90°间,建模实验中选取5个代表性数据:18°,36°,54°,72°,90°.
    某支数学建模队收集了“烧开一壶水”的实验数据,如下表:
    以x表示旋转角度,y表示燃气用量.
    (1)用列表法整理数据(x,y);
    (2)假定x,y线性相关,试求回归直线方程(注:计算结果精确到小数点后三位)
    (3)有队员用二次函数进行模拟,得到的函数关系为.求在该模型中,烧开一壶水燃气用量最少时的旋转角度.请用相关指数R2分析二次函数模型与线性回归模型哪种拟合效果更好?(注:计算结果精确到小数点后一位)
    参考数据:,,,,
    线性回归模型,二次函数模型.
    参考公式:,,.
    题型七:最大似然估算
    【典例7-1】(2024·河南·模拟预测)为落实食品安全的“两个责任”,某市的食品药品监督管理部门和卫生监督管理部门在市人民代表大会召开之际特别邀请相关代表建言献策.为保证政策制定的公平合理性,两个部门将首先征求相关专家的意见和建议,已知专家库中共有4位成员,两个部门分别独立地发出邀请,邀请的名单从专家库中随机产生,两个部门均邀请2位专家,收到食品药品监督管理部门或卫生监督管理部门的邀请后,专家如约参加会议.
    (1)用1,2,3,4代表专家库中的4位专家,甲、乙分别代表食品药品监督管理部门和卫生监督管理部门,将两个部门邀请的专家及参会的专家人数的所有情况绘制成一个表格,请完成如下表格.

    (2)最大似然估计即最大概率估计,即当时,概率取得最大值,则X的估计值为k(,,,…,),其中为X所有可能取值的最大值.请用最大似然估计法估计参加会议的专家人数.
    【典例7-2】(2024·湖北孝感·模拟预测)为落实食品安全的“两个责任”,某市的食品药品监督管理部门和卫生监督管理部门在市人民代表大会召开之际特别邀请相关代表建言献策.为保证政策制定的公平合理性,两个部门将首先征求相关专家的意见和建议,已知专家库中共有5位成员,两个部门分别独立地发出批建邀请的名单从专家库中随机产生,两个部门均邀请2位专家,收到食品药品监督管理部门或卫生监督管理部门的邀请后,专家如约参加会议.
    (1)设参加会议的专家代表共X名,求X的分布列与数学期望.
    (2)为增强政策的普适性及可行性,在征求专家建议后,这两个部门从网络评选出的100位热心市民中抽取部分市民作为群众代表开展座谈会,以便为政策提供支持和补充意见.已知这两个部门的邀请相互独立,邀请的名单从这100名热心市民中随机产生,食品药品监督管理部门邀请了名代表,卫生监督管理部门邀请了名代表,假设收到食品药品监督管理部门或卫生监督管理部门的邀请后,群众代表如约参加座谈会,且,请利用最大似然估计法估计参加会议的群众代表的人数.(备注:最大似然估计即最大概率估计,即当P(X=k)取值最大时,X的估计值为k)
    【变式7-1】(2024·高三·湖南长沙·阶段练习)统计与概率主要研究现实生活中的数据和客观世界中的随机现象,通过对数据的收集、整理、分析、描述及对事件发生的可能性刻画,来帮助人们作出合理的决策.
    (1)现有池塘甲,已知池塘甲里有50条鱼,其中A种鱼7条,若从池塘甲中捉了2条鱼.用表示其中A种鱼的条数,请写出的分布列,并求的数学期望;
    (2)另有池塘乙,为估计池塘乙中的鱼数,某同学先从中捉了50条鱼,做好记号后放回池塘,再从中捉了20条鱼,发现有记号的有5条.
    (ⅰ)请从分层抽样的角度估计池塘乙中的鱼数.
    (ⅱ)统计学中有一种重要而普遍的求估计量的方法─最大似然估计,其原理是使用概率模型寻找能够以较高概率产生观察数据的系统发生树,即在什么情况下最有可能发生已知的事件.请从条件概率的角度,采用最大似然估计法估计池塘乙中的鱼数.
    【过关测试】
    1.(2024·河南·模拟预测)甲、乙、丙三人进行传球游戏,每次投掷一枚质地均匀的正方体骰子决定传球的方式:当球在甲手中时,若骰子点数大于3,则甲将球传给乙,若点数不大于3,则甲将球保留;当球在乙手中时,若骰子点数大于4,则乙将球传给甲,若点数不大于4,则乙将球传给丙;当球在丙手中时,若骰子点数大于3,则丙将球传给甲,若骰子点数不大于3,则丙将球传给乙.初始时,球在甲手中.
    (1)设前三次投掷骰子后,球在甲手中的次数为,求随机变量的分布列和数学期望;
    (2)投掷次骰子后,记球在乙手中的概率为,求数列的通项公式;
    (3)设,求证:.
    2.(2024·高三·云南保山·期末)现有甲、乙两名篮球运动员进行投篮练习,甲每次投篮命中的概率为,乙每次投篮命中的概率为.
    (1)为了增加投篮练习的趣味性,甲、乙两人约定进行如下游戏:甲、乙两人同时投一次篮为一局比赛,若甲投进且乙未投进,则认定甲此局获胜;若甲未投进乙投进,则认定乙此局获胜;其它情况认定为平局,获胜者此局得1分,其它情况均不得分,当一人得分比另一人得分多3分时,游戏结束,且得分多者取得游戏的胜利.求甲恰在第五局结束时取得游戏胜利的概率.
    (2)投篮练习规定如下规则:甲、乙两人轮流投篮,若命中则此人继续投篮,若未命中则对方投篮,第一次投篮由甲完成,设为第次投篮由甲完成的概率.
    (i)求,,的值;
    (ii)求与的关系式,并求出.
    甲、乙均不得分的概率是,
    甲恰在第五局结束时取得游戏胜利的比分是3∶0或4∶1,
    当比分是3∶0时,甲获胜的概率为;
    当比分是4∶1时,甲获胜的概率为
    所以甲恰在第五局结束后取得游戏胜利的概率为.
    (2)(ⅰ)由题意知:,,.
    (ⅱ)由题意知:当时,,
    所以,又,
    所以是以为公比,为首项的等比数列;
    所以.
    3.(2024·高三·浙江·开学考试)一般地,元有序实数对称为维向量.对于两个维向量,定义:两点间距离,利用维向量的运算可以解决许多统计学问题.其中,依据“距离”分类是一种常用的分类方法:计算向量与每个标准点的距离,与哪个标准点的距离最近就归为哪类.某公司对应聘员工的不同方面能力进行测试,得到业务能力分值、管理能力分值、计算机能力分值、沟通能力分值(分值代表要求度,1分最低,5分最高)并形成测试报告.不同岗位的具体要求见下表:
    对应聘者的能力报告进行四维距离计算,可得到其最适合的岗位.设四种能力分值分别对应四维向量的四个坐标.
    (1)将这四个岗位合计分值从小到大排列得到一组数据,直接写出这组数据的第三四分位数;
    (2)小刚与小明到该公司应聘,已知:只有四个岗位的拟合距离的平方均小于20的应聘者才能被招录.
    (i)小刚测试报告上的四种能力分值为,将这组数据看成四维向量中的一个点,将四种职业的分值要求看成样本点,分析小刚最适合哪个岗位;
    (ii)小明已经被该公司招录,其测试报告经公司计算得到四种职业的推荐率分别为,试求小明的各项能力分值.
    4.(2024·江苏南通·模拟预测)设是一个二维离散型随机变量,它们的一切可能取的值为,其中i,,令,称是二维离散型随机变量的联合分布列.与一维的情形相似,我们也习惯于把二维离散型随机变量的联合分布列写成下表形式:现有个相同的球等可能的放入编号为1,2,3的三个盒子中,记落下第1号盒子的球的个数为X,落入第2号盒子中的球的个数为
    (1)当时,求的联合分布列;
    (2)设,且,求
    5.(2024·高三·江苏南京·期末)设(X,Y)是一个二维离散型随机变量,其所有可能取值为(ai,bj),其中i,j∈N*.记pij=P(X=ai,Y=bj)是随机变量(X,Y)的联合分布列.与一维的情形相似,二维分布列可以如下形式表示:
    现将3张卡片等可能地放入A,B两盒,记A盒中的卡片数为X,B盒中的卡片数为Y,求(X,Y)的联合分布列.
    6.(2024·高三·江苏扬州·期末)某保险公司有一款保险产品,该产品今年保费为200元/人,赔付金额为5万元/人.假设该保险产品的客户为10000名,每人被赔付的概率均为,记10000名客户中获得赔偿的人数为.
    (1)求,并计算该公司今年这一款保险产品利润的期望;
    (2)二项分布是离散型的,而正态分布是连续型的,它们是不同的概率分布,但是,随着二项分布的试验次数的增加,二项分布折线图与正态分布曲线几乎一致,所以当试验次数较大时,可以利用正态分布处理二项分布的相关概率计算问题,我们知道若,则,当较大且较小时,我们为了简化计算,常用的值估算的值.
    请根据上述信息,求:
    ①该公司今年这一款保险产品利润为50~100万元的概率;
    ②该公司今年这一款保险产品亏损的概率.
    参考数据:若,则.
    测试指标
    元件数(件)
    12
    18
    36
    30
    4
    YX




























    1
    YX
    1
    2
    3
    1
    0.1
    0.3
    0.2
    0.6
    2
    0.05
    0.2
    0.15
    0.4
    0.15
    0.5
    0.35
    1
    年份序号
    1
    2
    3
    4
    5
    人数(万人)
    263
    273
    286
    314
    334
    项目
    旋转角度
    开始烧水时燃气表计数/dm3
    水烧开时燃气表计数/dm3
    18°
    9080
    9210
    36°
    8958
    9080
    54°
    8819
    8958
    72°
    8670
    8819
    90°
    8498
    8670
    x(旋转角度:度)
    18
    36
    54
    72
    90
    y(燃气用量:dm3)
    岗位
    业务能力分值
    管理能力分值
    计算机能力分值
    沟通能力分值
    合计分值
    会计(1)
    2
    1
    5
    4
    12
    业务员(2)
    5
    2
    3
    5
    15
    后勤(3)
    2
    3
    5
    3
    13
    管理员(4)
    4
    5
    4
    4
    17
    (X,Y)
    b1
    b2

    a1
    p11
    p12

    a2
    p21
    p22





    相关试卷

    专题06 高等解析几何背景新定义(七大题型)-2024年新高考数学突破新定义压轴题综合讲义:

    这是一份专题06 高等解析几何背景新定义(七大题型)-2024年新高考数学突破新定义压轴题综合讲义,文件包含专题06高等解析几何背景新定义七大题型原卷版docx、专题06高等解析几何背景新定义七大题型解析版docx等2份试卷配套教学资源,其中试卷共79页, 欢迎下载使用。

    专题05 数列下的新定义- 2024年新高考数学突破新定义压轴题综合讲义:

    这是一份专题05 数列下的新定义- 2024年新高考数学突破新定义压轴题综合讲义,文件包含专题05数列下的新定义七大题型原卷版docx、专题05数列下的新定义七大题型解析版docx等2份试卷配套教学资源,其中试卷共78页, 欢迎下载使用。

    专题04 高等数学定理背景命题(六大题型)-2024年新高考数学突破新定义压轴题综合讲义:

    这是一份专题04 高等数学定理背景命题(六大题型)-2024年新高考数学突破新定义压轴题综合讲义,文件包含专题04高等数学定理背景命题六大题型原卷版docx、专题04高等数学定理背景命题六大题型解析版docx等2份试卷配套教学资源,其中试卷共67页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map