所属成套资源:2024年中考数学二轮复习课件+讲义+练习(全国通用)
重难点05 几何动点及最值、存在性问题(12题型)-2024年中考数学二轮复习讲义(全国通用)
展开
这是一份重难点05 几何动点及最值、存在性问题(12题型)-2024年中考数学二轮复习讲义(全国通用),文件包含重难点05几何动点及最值存在性问题原卷版docx、重难点05几何动点及最值存在性问题解析版docx等2份试卷配套教学资源,其中试卷共114页, 欢迎下载使用。
一、复习方法
1.以专题复习为主。 2.重视方法思维的训练。
3.拓宽思维的广度,培养多角度、多维度思考问题的习惯。
二、复习难点
1.专题的选择要准,安排时间要合理。 2.专项复习要以题带知识。
3.在复习的过程中要兼顾基础,在此基础上适当增加变式和难度,提高能力。
重难点突破05 几何动点及最值、存在性问题
目 录
TOC \ "1-3" \n \p " " \h \z \u
\l "_Tc164095067" 题型01 将军饮马问题
\l "_Tc164095068" 题型02 胡不归问题
\l "_Tc164095069" 题型03 阿氏圆问题
\l "_Tc164095070" 题型04 隐圆问题
\l "_Tc164095071" 题型05 费马点问题
\l "_Tc164095072" 题型06 瓜豆原理模型
\l "_Tc164095073" 题型07 等腰(边)三角形存在问题
\l "_Tc164095074" 题型08 直角三角形存在问题
\l "_Tc164095075" 题型09 平行四边形存在问题
\l "_Tc164095076" 题型10 矩形、菱形、正方形存在问题
\l "_Tc164095077" 题型11 全等/相似存在性问题
\l "_Tc164095078" 题型12 角度存在性问题
【命题趋势】动态几何问题是近年来中考的一个重难点问题,以运动的观点探究几何图形或函数与几何图形的变化规律,从而确定某一图形的存在性问题.随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题.
【基本原理】
1)基本原理(定点到定点):两点之间,线段最短.
2)三角形两边之和>第三边
3)基本原理(定点到定线):垂线段最短.
4)平行线的距离处处相等.
5)基本原理(定点到定圆):点圆之间,点心线截距最短(长).
6)基本原理(定线到定圆):线圆之间,心垂线截距最短.
7)基本原理(定圆到定圆):圆圆之间,连心线截距最短(长).
【解题思路】
1)动态几何问题是以几何图形为背景的,几何图形有直线型和曲线型两种,那么动态几何也有直线型的和曲线型的两类,即全等三角形、相似三角形中的动态几何问题,也有圆中的动态问题.有点动、线动、面动,就其运动形式而言,有平移、旋转、翻折、滚动等.根据其运动的特点,又可分为(1) 动点类(点在线段或弧线上运动)也包括一个动点或两个动点; (2) 动直线类;(3)动图形问题.
2)解决动态几何题,通过观察,对几何图形运动变化规律的探索,发现其中的“变量”和“定量”动中求静,即在运动变化中探索问题中的不变性;动静互化抓住“静”的瞬间,使一般情形转化为特殊问题,从而找到“动与静”的关系;这需要有极敏锐的观察力和多种情况的分析能力,加以想象、结合推理,得出结论.解决这类问题,要善于探索图形的运动特点和规律抓住变化中图形的性质与特征,化动为静,以静制动.解决运动型试题需要用运动与变化的眼光去观察和研究图形,把握图形运动与变化的全过程,抓住其中的等量关系和变量关系,并特别关注--些不变量和不变关系或特殊关系.
3)动态几何形成的存在性问题,重点和难点在于应用分类思想和数形结合的思想准确地进行分类,包括等腰(边)三角形存在问题,直角三角形存在问题,平行四边形存在问题,矩形、菱形、正方形存在问题.全等三角形存在问题,相似三角形存在问题等.
题型01 将军饮马问题
1.(2023·辽宁盘锦·中考真题)如图,四边形ABCD是矩形,AB=10,AD=42,点P是边AD上一点(不与点A,D重合),连接PB,PC.点M,N分别是PB,PC的中点,连接MN,AM,DN,点E在边AD上,ME∥DN,则AM+ME的最小值是( )
A.23B.3C.32D.42
【答案】C
【分析】根据直线三角形斜边中线的性质可得AM=12BP,DN=12CP,通过证明四边形MNDE是平行四边形,可得ME=DN,则AM+ME=AM+DN=12BP+CP,作点C关于直线AD的对称点M,则BP+CP=BP+PM,点B,P,M三点共线时,BP+PM的值最小,最小值为BM.
【详解】解:∵四边形ABCD是矩形,
∴ ∠BAP=∠CDP=90°,AD∥BC,
∵点M,N分别是PB,PC的中点,
∴ AM=12BP,DN=12CP,MN=12BC,MN∥BC,
∵ AD∥BC,MN∥BC,
∴ MN∥BC,
又∵ ME∥DN,
∴四边形MNDE是平行四边形,
∴ ME=DN,
∴ AM+ME=AM+DN=12BP+CP,
如图,作点C关于直线AD的对称点M,连接PM,BM,
则BP+CP=BP+PM,
当点B,P,M三点共线时,BP+PM的值最小,最小值为BM,
在Rt△BCM中,MC=2CD=2AB=210,BC=AD=42,
∴ BM=BC2+MC2=422+2102=62,
∴ AM+ME的最小值=12BM=32,
故选C.
【点睛】本题考查矩形的性质,直线三角形斜边中线的性质,中位线的性质,平行四边形的判定与性质,轴对称的性质,勾股定理,线段的最值问题等,解题的关键是牢固掌握上述知识点,熟练运用等量代换思想.
2.(2023·广东广州·中考真题)如图,正方形ABCD的边长为4,点E在边BC上,且BE=1,F为对角线BD上一动点,连接CF,EF,则CF+EF的最小值为 .
【答案】17
【分析】连接AE交BD于一点F,连接CF,根据正方形的对称性得到此时CF+EF=AE最小,利用勾股定理求出AE即可.
【详解】解:如图,连接AE交BD于一点F,连接CF,
∵四边形ABCD是正方形,
∴点A与点C关于BD对称,
∴AF=CF,
∴CF+EF=AF+EF=AE,此时CF+EF最小,
∵正方形ABCD的边长为4,
∴AD=4,∠ABC=90°,
∵点E在AB上,且BE=1,
∴AE=AB2+BE2=42+12=17,即CF+EF的最小值为17
故答案为:17.
【点睛】此题考查正方形的性质,熟练运用勾股定理计算是解题的关键.
3.(2023·四川宜宾·中考真题)如图,在平面直角坐标系xOy中,等腰直角三角形ABC的直角顶点C3,0,顶点A、B6,m恰好落在反比例函数y=kx第一象限的图象上.
(1)分别求反比例函数的表达式和直线AB所对应的一次函数的表达式;
(2)在x轴上是否存在一点P,使△ABP周长的值最小.若存在,求出最小值;若不存在,请说明理由.
【答案】(1)y=6x,y=−12x+4
(2)在x轴上存在一点P5,0,使△ABP周长的值最小,最小值是25+42.
【分析】(1)过点A作AE⊥x轴于点E,过点B作BD⊥x轴于点D,证明△ACE≌△CBDAAS,则CD=AE=3,BD=EC=m,由OE=3−m得到点A的坐标是3−m,3,由A、B6,m恰好落在反比例函数y=kx第一象限的图象上得到33−m=6m,解得m=1,得到点A的坐标是2,3,点B的坐标是6,1,进一步用待定系数法即可得到答案;
(2)延长AE至点A',使得EA'=AE,连接A'B交x轴于点P,连接AP,利用轴对称的性质得到AP=A'P,A'2,−3,则AP+PB=A'B,由AB=25知AB是定值,此时△ABP的周长为AP+PB+AB=AB+A'B最小,利用待定系数法求出直线A'B的解析式,求出点P的坐标,再求出周长最小值即可.
【详解】(1)解:过点A作AE⊥x轴于点E,过点B作BD⊥x轴于点D,
则∠AEC=∠CDB=90°,
∵点C3,0,B6,m,
∴OC=3,OD=6, BD=m,
∴CD=OD−OC=3,
∵△ABC是等腰直角三角形,
∴∠ACB=90°,AC=BC,
∵∠ACE+∠BCD=∠CBD+∠BCD=90°,
∴∠ACE=∠CBD,
∴△ACE≌△CBDAAS,
∴CD=AE=3,BD=EC=m,
∴OE=OC−EC=3−m,
∴点A的坐标是3−m,3,
∵A、B6,m恰好落在反比例函数y=kx第一象限的图象上.
∴33−m=6m,
解得m=1,
∴点A的坐标是2,3,点B的坐标是6,1,
∴k=6m=6,
∴反比例函数的解析式是y=6x,
设直线AB所对应的一次函数的表达式为y=px+q,把点A和点B的坐标代入得,
2p+q=36p+q=1,解得p=−12q=4,
∴直线AB所对应的一次函数的表达式为y=−12x+4,
(2)延长AE至点A',使得EA'=AE,连接A'B交x轴于点P,连接AP,
∴点A与点A'关于x轴对称,
∴AP=A'P,A'2,−3,
∵AP+PB=A'P+PB=A'B,
∴AP+PB的最小值是A'B的长度,
∵AB=2−62+3−12=25,即AB是定值,
∴此时△ABP的周长为AP+PB+AB=AB+A'B最小,
设直线A'B的解析式是y=nx+t,
则2n+t=−36n+t=1,
解得n=1t=−5,
∴直线A'B的解析式是y=x−5,
当y=0时,0=x−5,解得x=5,
即点P的坐标是5,0,
此时AP+PB+AB=AB+A'B=25+2−62+−3−12=25+42,
综上可知,在x轴上存在一点P5,0,使△ABP周长的值最小,最小值是25+42.
【点睛】此题考查了反比例函数和一次函数的图象和性质、用到了待定系数法求函数解析式、勾股定理求两点间距离、轴对称最短路径问题、全等三角形的判定和性质等知识,数形结合和准确计算是解题的关键.
题型02 胡不归问题
4.(2022·内蒙古鄂尔多斯·中考真题)如图,在△ABC中,AB=AC=4,∠CAB=30°,AD⊥BC,垂足为D,P为线段AD上的一动点,连接PB、PC.则PA+2PB的最小值为 .
【答案】42
【分析】在∠BAC的外部作∠CAE=15°,作BF⊥AE于F,交AD于P,此时PA+2PB=212PA+PB=12PF+PB=2BF,通过解直角三角形ABF,进一步求得结果.
【详解】解:如图,
在∠BAC的外部作∠CAE=15°,作BF⊥AE于F,交AD于P,
此时PA+2PB最小,
∴∠AFB=90°
∵AB=AC,AD⊥BC,
∴∠CAD=∠BAD=12∠BAC=12×30°=15°,
∴∠EAD=∠CAE+∠CAD=30°,
∴PF=12PA,
∴PA+2PB=212PA+PB=12PF+PB=2BF,
在Rt△ABF中,AB=4,∠BAF=∠BAC+∠CAE=45°,
∴BF=AB•sin45°=4×22=22,
∴(PA+2PB)最大=2BF=42,
故答案为:42.
【点睛】本题考查了等腰三角形的性质,解直角直角三角形,解题的关键是作辅助线.
5.(2023·湖南湘西·中考真题)如图,⊙O是等边三角形ABC的外接圆,其半径为4.过点B作BE⊥AC于点E,点P为线段BE上一动点(点P不与B,E重合),则CP+12BP的最小值为 .
【答案】6
【分析】过点P作PD⊥AB,连接CO并延长交AB于点F,连接AO,根据等边三角形的性质和圆内接三角形的性质得到OA=OB=4,CF⊥AB,然后利用含30°角直角三角形的性质得到OE=12OA=2,进而求出BE=BO+EO=6,然后利用CP+12BP=CP+PD≤CF代入求解即可.
【详解】如图所示,过点P作PD⊥AB,连接CO并延长交AB于点F,连接AO
∵△ABC是等边三角形,BE⊥AC
∴∠ABE=∠CBE=12∠ABC=30°
∵⊙O是等边三角形ABC的外接圆,其半径为4
∴OA=OB=4,CF⊥AB,
∴∠OBA=∠OAB=30°
∴∠OAE=∠OAB=12∠BAC=30°
∵BE⊥AC
∴OE=12OA=2
∴BE=BO+EO=6
∵PD⊥AB,∠ABE=30°
∴PD=12PB
∴CP+12BP=CP+PD≤CF
∴CP+12BP的最小值为CF的长度
∵△ABC是等边三角形,BE⊥AC,CF⊥AB
∴CF=BE=6
∴CP+12BP的最小值为6.
故答案为:6.
【点睛】此题考查了圆内接三角形的性质,等边三角形的性质,含30°角直角三角形的性质等知识,解题的关键是熟练掌握以上知识点.
6.(2023·辽宁锦州·中考真题)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=4,按下列步骤作图:①在AC和AB上分别截取AD、AE,使AD=AE.②分别以点D和点E为圆心,以大于12DE的长为半径作弧,两弧在∠BAC内交于点M.③作射线AM交BC于点F.若点P是线段AF上的一个动点,连接CP,则CP+12AP的最小值是 .
【答案】23
【分析】过点P作PQ⊥AB于点Q,过点C作CH⊥AB于点H,先利用角平分线和三角形的内角和定理求出∠BAF=30°,然后利用含30°的直角三角的性质得出PQ=12AP,则CP+12AP=CP+PQ≥CH,当C、P、Q三点共线,且与AB垂直时,CP+12AP最小,CP+12AP最小值为CH,利用含30°的直角三角的性质和勾股定理求出AB,BC,最后利用等面积法求解即可.
【详解】解:过点P作PQ⊥AB于点Q,过点C作CH⊥AB于点H,
由题意知:AF平分∠BAC,
∵∠ACB=90°,∠ABC=30°,
∴∠BAC=60°,
∴∠BAF=12∠BAC=30°,
∴PQ=12AP,
∴CP+12AP=CP+PQ≥CH,
∴当C、P、Q三点共线,且与AB垂直时,CP+12AP最小,CP+12AP最小值为CH,
∵∠ACB=90°,∠ABC=30°,AC=4,
∴AB=2AC=8,
∴BC=AB2−AC2=43,
∵S△ABC=12AC⋅BC=12AB⋅CH,
∴CH=AC⋅BCAB=4×438=23,
即CP+12AP最小值为23.
故答案为:23.
【点睛】本题考查了尺规作图-作角平分线,含30°的直角三角形的性质,勾股定理等知识,注意掌握利用等积法求三角形的高或点的线的距离的方法.
题型03 阿氏圆问题
7.(2023·山东烟台·中考真题)如图,抛物线y=ax2+bx+5与x轴交于A,B两点,与y轴交于点C,AB=4.抛物线的对称轴x=3与经过点A的直线y=kx−1交于点D,与x轴交于点E.
(1)求直线AD及抛物线的表达式;
(2)在抛物线上是否存在点M,使得△ADM是以AD为直角边的直角三角形?若存在,求出所有点M的坐标;若不存在,请说明理由;
(3)以点B为圆心,画半径为2的圆,点P为⊙B上一个动点,请求出PC+12PA的最小值.
【答案】(1)直线AD的解析式为y=x−1;抛物线解析式为y=x2−6x+5
(2)存在,点M的坐标为4,−3或0,5 或5,0
(3)41
【分析】
(1)根据对称轴x=3,AB=4,得到点A及B的坐标,再利用待定系数法求解析式即可;
(2)先求出点D的坐标,再分两种情况:①当∠DAM=90°时,求出直线AM的解析式为y=−x+1,解方程组y=−x+1y=x2−6x+5,即可得到点M的坐标;②当∠ADM=90°时,求出直线DM的解析式为y=−x+5,解方程组y=−x+5y=x2−6x+5,即可得到点M的坐标;
(3)在AB上取点F,使BF=1,连接CF,证得BFPB=PBAB,又∠PBF=∠ABP,得到△PBF∽△ABP,推出PF=12PA,进而得到当点C、P、F三点共线时,PC+12PA的值最小,即为线段CF的长,利用勾股定理求出CF即可.
【详解】(1)解:∵抛物线的对称轴x=3,AB=4,
∴A1,0,B5,0,
将A1,0代入直线y=kx−1,得k−1=0,
解得k=1,
∴直线AD的解析式为y=x−1;
将A1,0,B5,0代入y=ax2+bx+5,得
a+b+5=025a+5b+5=0,解得a=1b=−6,
∴抛物线的解析式为y=x2−6x+5;
(2)存在点M,
∵直线AD的解析式为y=x−1,抛物线对称轴x=3与x轴交于点E.
∴当x=3时,y=x−1=2,
∴D3,2,
①当∠DAM=90°时,
设直线AM的解析式为y=−x+c,将点A坐标代入,
得−1+c=0,
解得c=1,
∴直线AM的解析式为y=−x+1,
解方程组y=−x+1y=x2−6x+5,
得x=1y=0或x=4y=−3,
∴点M的坐标为4,−3;
②当∠ADM=90°时,
设直线DM的解析式为y=−x+d,将D3,2代入,
得−3+d=2,
解得d=5,
∴直线DM的解析式为y=−x+5,
解方程组y=−x+5y=x2−6x+5,
解得x=0y=5或x=5y=0,
∴点M的坐标为0,5 或5,0
综上,点M的坐标为4,−3或0,5 或5,0;
(3)如图,在AB上取点F,使BF=1,连接CF,
∵PB=2,
∴BFPB=12,
∵PBAB=24=12,、
∴BFPB=PBAB,
又∵∠PBF=∠ABP,
∴△PBF∽△ABP,
∴PFPA=BFPB=12,即PF=12PA,
∴PC+12PA=PC+PF≥CF,
∴当点C、P、F三点共线时,PC+12PA的值最小,即为线段CF的长,
∵OC=5,OF=OB−1=5−1=4,
∴CF=OC2+OF2=52+42=41,
∴PC+12PA的最小值为41.
【点睛】此题是一次函数,二次函数及圆的综合题,掌握待定系数法求函数解析式,直角三角形的性质,勾股定理,相似三角形的判定和性质,求两图象的交点坐标,正确掌握各知识点是解题的关键.
8.(2023·山东济南·一模)抛物线y=−12x2+a−1x+2a与x轴交于Ab,0,B4,0两点,与y轴交于点C0,c,点P是抛物线在第一象限内的一个动点,且在对称轴右侧.
(1)求a,b,c的值;
(2)如图1,连接BC、AP,交点为M,连接PB,若S△PMBS△AMB=14,求点P的坐标;
(3)如图2,在(2)的条件下,过点P作x轴的垂线交x轴于点E,将线段OE绕点O逆时针旋转得到OE',旋转角为α(0°AC,BC>AB,
∴BC+AB>AC+AB,BC+AC>AB+AC,
∴三个顶点中,顶点A到另外两个顶点的距离和最小.
又∵已知当△ABC有一个内角大于或等于120°时,“费马点”为该三角形的某个顶点.
∴该三角形的“费马点”为点A,
故答案为:①等边;②两点之间线段最短;③120°;④A.
(2)将△APC绕,点C顺时针旋转60°得到△A'P'C,连接PP',
由(1)可知当B,P,P',A在同一条直线上时,PA+PB+PC取最小值,最小值为A'B,
∵∠ACP=∠A'CP',
∴∠ACP+∠BCP=∠A'CP'+∠BCP=∠ACB=30°,
又∵∠PCP'=60°
∴∠BCA'=∠A'CP'+∠BCP+∠PCP'=90°,
由旋转性质可知:AC=A'C=3,
∴A'B=BC2+A'C2=42+32=5,
∴PA+PB+PC最小值为5,
(3)∵总的铺设成本=PA·a+PB·a+PC·2a=a(PA+PB+2PC)
∴当PA+PB+2PC最小时,总的铺设成本最低,
将△APC绕,点C顺时针旋转90°得到△A'P'C,连接PP',A'B
由旋转性质可知:P'C=PC,∠PCP'=∠ACA'=90°,P'A'=PA,A'C=AC=4km,
∴PP'=2PC,
∴PA+PB+2PC=P'A'+PB+PP',
当B,P,P',A在同一条直线上时,P'A'+PB+PP'取最小值,即PA+PB+2PC取最小值为A'B,
过点A'作A'H⊥BC,垂足为H,
∵∠ACB=60°,∠ACA'=90°,
∴∠A'CH=30°,
∴A'H=12A'C=2km,
∴HC=AC2−AH2=42−22=23(km),
∴BH=BC+CH=23+23=43(km),
∴A'B=AH2+BH2=(43)2+22=213(km)
PA+PB+2PC的最小值为213km
总的铺设成本=PA·a+PB·a+PC·2a=a(PA+PB+2PC)=213a(元)
故答案为:213a
【点睛】本题考查了费马点求最值问题,涉及到的知识点有旋转的性质,等边三角形的判定与性质,勾股定理,以及两点之间线段最短等知识点,读懂题意,利用旋转作出正确的辅助线是解本题的关键.
15.(2021·山东济南·三模)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°,则点P叫做△ABC的费马点.
(1)若点P是等边三角形三条中线的交点,点P (填是或不是)该三角形的费马点.
(2)如果点P为锐角△ABC的费马点,且∠ABC=60°.求证:△ABP∽△BCP;
(3)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD相交于P点.如图(2)
①求∠CPD的度数;
②求证:P点为△ABC的费马点.
【答案】(1)是;(2)见解析;(3)①60°,②见解析
【分析】(1)由等边三角形的性质证明∠ABP=∠PAB=30°, 可得∠APB=120°, 同法可得:∠APC=∠BPC=120°, 从而可得结论;
(2)由P为锐角△ABC的费马点,且∠ABC=60°,证明∠PAB=∠PBC,∠APB=∠BPC=120°,从而可得△ABP∽△BCP;
(3)①如图2所示:由△ABE与△ACD都为等边三角形,证明△ACE≌△ADB(SAS),利用全等三角形的性质可得∠CPD=∠6=∠5=60°; ② 先证明△ADF∽△PCF,可得AFPF=DFCF, 再证明△AFP∽△DFC.可得∠APC=∠CPD+∠APF=120°,再证明∠BPC=120°,从而可得结论.
【详解】解:(1)如图1所示:
∵AB=BC,BM是AC的中线,
∴MB平分∠ABC.
同理:AN平分∠BAC,PC平分∠BCA.
∵△ABC为等边三角形,
∴∠ABP=30°,∠BAP=30°.
∴∠APB=120°.
同理:∠APC=120°,∠BPC=120°.
∴P是△ABC的费马点.
故答案为:是.
(2)∵P为锐角△ABC的费马点,且∠ABC=60°.
∴ ∠APB=∠BPC=120°,
∴ ∠PAB+∠PBA=180°﹣∠APB=60°,∠PBC+∠PBA=∠ABC=60°,
∴∠PAB=∠PBC,
∴△ABP∽△BCP.
(3)如图2所示:
①∵△ABE与△ACD都为等边三角形,
∴∠BAE=∠CAD=60°,AE=AB,AC=AD,
∴∠BAE+∠BAC=∠CAD+∠BAC,即∠EAC=∠BAD,
在△ACE和△ABD中,{AC=AD∠EAC=∠BADAE=AB
∴△ACE≌△ADB(SAS),
∴∠1=∠2,
∵∠3=∠4,
∴∠CPD=∠6=∠5=60°;
②证明:∵∠1=∠2,∠3=∠4,
∴ △ADF∽△PCF,
∴AFPF=DFCF,
∵∠AFP=∠CFD,
∴△AFP∽△DFC.
∴∠APF=∠ACD=60°,
∴∠APC=∠CPD+∠APF=120°,
∵∠6=60°,
∴∠BPC=120°,
∴∠APB=360°﹣∠BPC﹣∠APC=120°,
∴P点为△ABC的费马点.
【点睛】本题考查的是等边三角形的性质,三角形全等的判定与性质,三角形相似的判定与性质,确定图中隐含的全等三角形与相似三角形是解题的关键.
题型06 瓜豆原理模型
16.(22-23九年级上·江苏扬州·阶段练习)如图,A是⊙B上任意一点,点C在⊙B外,已知AB=2,BC=4,△ACD是等边三角形,则△BCD的面积的最大值为( )
A.43+4B.4C.43+8D.6
【答案】A
【分析】以BC为边向上作等边三角形BCM,连接DM,证明△DCM≌△ACB得到DM=AB=2,分析出点D的运动轨迹是以点M为圆心,DM长为半径的圆,在求出点D到线段BC的最大距离,即可求出面积的最大值.
【详解】解:如图,以BC为边向上作等边三角形BCM,连接DM,
∵∠DCA=∠MCB=60°,
∴∠DCA−∠ACM=∠MCB−∠ACM,即∠DCM=∠ACB,
在△DCM和△ACB中,
DC=AC∠DCM=∠ACBMC=BC,
∴△DCM≌△ACBSAS,
∴DM=AB=2,
∴点D的运动轨迹是以点M为圆心,DM长为半径的圆,要使△BCD的面积最大,则求出点D到线段BC的最大距离,
∵△BCM是边长为4的等边三角形,
∴点M到BC的距离为23,
∴点D到BC的最大距离为23+2,
∴△BCD的面积最大值是12×4×23+2=43+4,
故选A.
【点睛】本题考查了动点轨迹是圆的问题,解决本题的关键是利用构造全等三角形找到动点D的轨迹圆,再求出圆上一点到定线段距离的最大值.
17.(2022·广东河源·二模)如图,已知AC=2AO=8,平面内点P到点O的距离为2,连接AP,若∠APB=60°且BP=12AP,连接AB,BC,则线段BC的最小值为 .
【答案】27−3
【分析】如图所示,延长PB到D使得PB=DB,先证明△APD是等边三角形,从而推出ABP=90°,∠BAP=30°,以AO为斜边在AC下方作Rt△AMO,使得∠MAO=30°,连接CM,过点M作MH⊥AC于H,解直角三角形得到AMAO=ABAP=32,从而证明△AMB∽△AOP,得到BMOP=ABAP=32,则BM=3,则点B在以M为圆心,以3为半径的圆上,当M、B、C三点共线时,即点B在点B'的位置时,BC有最小值,据此求解即可.
【详解】解:如图所示,延长PB到D使得PB=DB,
∵BP=12AP,
∴AP=PD=2PB,
又∵∠APB=60°,
∴△APD是等边三角形,
∵B为PD的中点,
∴AB⊥DP,即∠ABP=90°,
∴∠BAP=30°,
以AO为斜边在AC下方作Rt△AMO,使得∠MAO=30°,连接CM,过点M作MH⊥AC于H,
∴cs∠OAM=AMAO=32,
同理可得ABAP=32,
∵∠OAM=30°=∠PAB,
∴∠BAM=∠PAO,
又∵AMAO=ABAP=32,
∴△AMB∽△AOP,
∴BMOP=ABAP=32,
∵点P到点O的距离为2,即OP=2,
∴BM=3,
∴点B在以M为圆心,以3为半径的圆上,
连接CM交圆M(半径为3)于B',
∴当M、B、C三点共线时,即点B在点B'的位置时,BC有最小值,
∵AC=2AO=8,
∴AO=4,
∴AM=AO⋅cs∠OAM=23,
∴AH=AM⋅cs∠MAH=3,HM=AM⋅sin∠MAH=3,
∴CH=5,
∴CM=HM2+CH2=27,
∴B'C=CM−MB'=27−3,
∴BC的最小值为27−3,
故答案为:27−3.
【点睛】本题主要考查了等边三角形的性质与判定,解直角三角形,相似三角形的性质与判定,勾股定理,圆外一点到圆上一点的最值问题,解题的关键在于能够熟练掌握瓜豆模型即证明点B在以M为圆心,半径为3的圆上运动.
18.(23-24九年级上·江苏宿迁·阶段练习)如图,线段AB为⊙O的直径,点C在AB的延长线上,AB=4,BC=2,点P是⊙O上一动点,连接CP,以CP为斜边在PC的上方作Rt△PCD,且使∠DCP=60°,连接OD,则OD长的最大值为 .
【答案】23+1/1+23
【分析】作△COE,使得∠CEO=90°,∠ECO=60°,则CO=2CE,OE=23,∠OCP=∠ECD,由△COP∽△CED,推出OPED=CPCD=2,即ED=12OP=1(定长),由点E是定点,DE是定长,点D在半径为1的⊙E上,由此即可解决问题.
【详解】解:如图,作△COE,使得∠CEO=90°,∠ECO=60°,则CO=2CE,OE=23,∠OCP=∠ECD,
∵∠CDP=90°,∠DCP=60°,
∴CP=2CD,
∴ COCE=CPCD=2,
∴△COP∽△CED,
∴ OPED=CPCD=2,
即ED=12OP=1(定长),
∵点E是定点,DE是定长,
∴点D在半径为1的⊙E上,
∵OD≤OE+DE=23+1,
∴OD的最大值为23+1,
故答案为:23+1.
【点睛】本题考查了相似三角形的判定和性质、两圆的位置关系、轨迹等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.
19.(20-21九年级·陕西西安·开学考试)在菱形ABCD中,∠BAD=120°,E是对角线BD上的一点,连接AE.
(1)当E在AB的中垂线上时,把射线EA绕点E顺时针旋转90°后交CD于F,连接BF.如图①,若AB=4,求EF的长.
(2)在(1)的条件下,连接BF,把△BEF绕点B顺时针旋转得到△BHK如图②,连接CH,点N为CH的中点,连接AN,求AN的最大值.
【答案】(1)EF=83 (2)833
【分析】(1)通过菱形性质证明AE=BE,在Rt△DAE中,利用勾股定理求出AE的长度,再Rt△DAE中,可以得到DE=2AE,在等腰△DEF中,利用角度推导出DE=3EF,代入数值求解即可.
(2)判断出点H的运动轨迹,从而知道点N的运动轨迹,根据三角形三边关系,即可得到AN的最大值.
【详解】(1)解:过点F作FM⊥BD于点M,如下图:
∵四边形ABCD是菱形,且∠BAD=120°
∴AD=AB=4,∠ABC=∠ADC=60∘
∵BD为菱形对角线
∴∠ABE=∠ADE=∠FDE=30∘,
又∵E在AB的中垂线上
∴AE=BE
∴∠BAE=∠ABE=30∘
∴∠AED=60∘,∠EAD=∠BAD−∠BAE=120∘−30∘=90∘
在Rt△DAE中,∠ADE=30∘
∴DE=2AE
设:AE=x,则DE=2x
∵AE2+AD2=DE2
即:x2+42=(2x)2
解得:x=433
∴DE=833
∵∠AEF=90∘,∠AED=60∘
∴∠FED=30∘
∴∠FED=∠FDE
∴EF=DF
又∵FM⊥BD
∴EM=DM
∴DE=2EM=2×32EF=3EF
∴833=3EF
∴EF=83
(2)连接AC,延长AE交BC于点M,则有AM⊥BC,点H的运动轨迹是以点B为圆心,BH为半径的圆,因为点C为固定点,点N为CH的中点,所以点N的运动轨迹是以点M为圆心,NM为半径的圆,如下图:
此时:在△AMN在,AM+MN≥AN,当 A、M、N三点共线时,AN最大
则:在Rt△AMC中,CM=12AC=2
∵AM2=AC2−CM2
∴AM2=12
∴AM=23
又∵M点是BC的中点,N是CH的中点
∴MN=12BH=12BE=233
∴AN=23+233=833
【点睛】本题看考查勾股定理,等腰三角形性质.瓜豆模型等相关知识点,根据题意列出相关等量关系是解题重点.
20.(21-22八年级上·广东湛江·阶段练习)在平面直角坐标系中,Aa,0、Bb,0,且a,b满足(a+b)2+|3+b|=0,C、D两点分别是y轴正半轴、x轴负半轴上的两个动点:
(1)如图1,若C0,4,求△ABC的面积;
(2)如图1,若C0,4,BC=5,BD=AE,且∠CBA=∠CDE,求D点的坐标;
(3)如图2,若∠CBA=60°,以CD为边,在CD的右侧作等边△CDE,连接OE,当OE最短时,求A,E两点之间的距离;
【答案】(1)△ABC的面积为12;(2) D点的坐标为−2,0;(3) A,E两点之间的距离为32.
【分析】(1)利用完全平方式和绝对值的性质求出a, b,然后确定A、B两点坐标,从而利用三角形面积公式求解即可;
(2)根据题意判断出△CBD≅△DAE,从而得到CB= AD,然后利用勾股定理求出CB,即可求出结论;
(3)首先根据已知推出△DCB≅△ECA ,得到∠DBC=∠EAC=120°,进一步推出AE∥BC ,从而确定随着D点的运动,点E在过点A且平行于BC的直线PQ上运动,再根据点到直线的最短距离为垂线段的长度,确定OE最短时,各点的位置关系,最后根据含30°角的直角三角形的性质求解即可.
【详解】解: (1) :∵a+b2+b+3=0,
由非负性可知:a+b=0b+3=0 ,
解得:a=3b=−3
∴A(3,0), B(-3,0), AB=3-(-3)=6,
∵ C(0,4),
∴OC=4,
∴S△ABC=12AB·OC=12×6×4=12;
(2)由(1)知A(3,0), B(-3,0),
∴OA=OB,
∵OC⊥AB,
∴∠AOC=∠BOC=90°,
在△AOC和△BOC中,
OA=OB∠AOC=∠BOCOC=OC ,
∴△AOC≅△BOCSAS ,
∴∠CBO=∠CAO,
∵∠CDA=∠CDE +∠ADE=∠BCD+∠CBA,∠CBA=∠CDE,
∴∠ADE=∠BCD,
在△BCD和△ADE中,
∠BCD=∠ADE∠CBD=∠DAEBD=AE ,
∴△BCD≅△ADEAAS,
∴CB= AD,
∵ B(-3,0), C(0,4),
∴OB=3,OC=4,
∴ BC=OB2+OC2=5 ,
∴AD=BC=5,
∵A(3,0),
∴D(-2,0);
(3)由(2) 可知CB=CA,
∵∠CBA=60°,
∴△ABC为等边三角形,∠BCA=60°, ∠DBC=120°,
∵△CDE为等边三角形,
∴CD=CE,∠DCE=60°,
∵∠DCE=∠DCB+∠BCE,∠BCA=∠BCE+∠ECA,
∴∠DCB=∠ECA,
在△DCB和△ECA中,
CD=CE∠DCB=∠ECACB=CA ,
∴△DCB≌△ECA( SAS),
∴∠DBC=∠EAC= 120°,
∵∠EAC+∠ACB= 120°+60°= 180°,
∴AE∥BC,
即:随着D点的运动,点E在过点A且平行于BC的直线PQ上运动,
∵要使得OE最短,
∴如图所示,当OE⊥PQ时,满足OE最短,此时∠OEA=90°,
∵∠DBC=∠EAC=120°,∠CAB=60°,
∴∠OAE=∠EAC-∠CAB=60°,∠AOE= 30°,
∵ A(3,0),
∴OA=3,
∴AE=12OA=32
∴当OE最短时,A,E两点之间的距离为32.
【点睛】本题考查坐标与图形,全等三角形的判定与性质,等腰三角形和等边三角形的判定与性质等,理解平面直角坐标系中点坐标的特征,掌握等腰或等边三角形的性质,熟练使全等三角形的判定与性质是解题关键.
题型07 等腰(边)三角形存在问题
21.(2022·黑龙江·中考真题)如图,在平面直角坐标系中,平行四边形ABCD的边AB在x轴上,顶点D在y轴的正半轴上,M为BC的中点,OA、OB的长分别是一元二次方程x2−7x+12=0的两个根OA
相关试卷
这是一份2024年中考数学二轮复习 重难点 几何动点及最值、存在性问题(原卷版+解析版),共77页。
这是一份几何动点及最值、存在性问题--2024年中考数学,文件包含重难点几何动点及最值存在性问题解析版pdf、重难点几何动点及最值存在性问题学生版pdf等2份试卷配套教学资源,其中试卷共77页, 欢迎下载使用。
这是一份中考数学二轮复习 重难点05 二次函数与几何的动点及最值、存在性问题(2份打包,原卷版+解析版),文件包含中考数学二轮复习重难点05二次函数与几何的动点及最值存在性问题原卷版doc、中考数学二轮复习重难点05二次函数与几何的动点及最值存在性问题解析版doc等2份试卷配套教学资源,其中试卷共209页, 欢迎下载使用。