天津市第二耀华中学2023-2024学年高一下学期期中考试数学试卷(无答案)
展开本试卷考试时间100分钟,总分100分
第Ⅰ卷
一、选择题(每小题3分,共30分)
1.下列向量中,能作为表示它们所在平面内的所有向量的一组基底的是( )
A.,B.,
C.,D.,
2.复数,是虚数单位,则下列结论正确的是( )
A.B.z的共轭复数为
C.z的实部与虚部之和为1D.z在复平面内的对应点位于第一象限
3.四边形OABC直观图为如图矩形,其中,,则四边形OABC的周长为( )
A.8B.10C.12D.16
4.已知m,n为两条不同的直线,,为两个不同的平面,则下列命题中正确的有( )
(1),,,(2),
(3),,(4),
A.0个B.1个C.2个D.3个
5.已知平面向量,,则向量在向量上的投影向量是( )
A.B.C.D.
6.如图,在正三棱柱中,,,则四棱锥的体积是( ).该试卷源自 每日更新,享更低价下载。
A.B.C.D.
7.△ABC三边长分别为,,,则的值为( )
A.B.19C.14D.
8.设△ABC的内角A,B,C所对的边分别为a,b,c,若,则△ABC的形状为.( )
A.锐角三角形B.直角三角形C.钝角三角形D.不确定
9.已知A,B是球O的球面上两点,,C为该球面上的动点,若三棱锥O−ABC体积的最大值为36,则球O的表面积为( )
A.B.C.D.
10.在锐角三角形ABC中,若,且满足关系式,则的取值范围是( )
A.B.C.D.
第Ⅱ卷
二、填空题(每小题4分,共24分)
11.已知圆柱底面圆的周长为,母线长为4,则该圆柱的体积为 .
12.已知,则 .
13.已知非零向量,满足,且,则向量与的夹角为 .
14.设点O是△ABC的外心(外接圆圆心),,,的值为 .
15.如图所示,在长方体中,,,则与平面所成角的正弦值为 .
16.若△ABC是钝角三角形,,,,则x的取值范围是 .
三、解答题
17.(本题8分)
在三棱锥P—ABC中,面ABC,,,,
(1)求三棱锥P—ABC的侧面积;
(2)求点A到平面PBC的距离.
18.(本题8分)
△ABC的内角A,B,C所对的边分别为a,b,c,向量与平行.
(Ⅰ)求A;
(Ⅱ)若,,求△ABC的面积.
19.(本题10分)
如图,四棱锥C−ABED中,四边形ABED是正方形,若G,F分别是线段EC,BD的中点.
(1)求证:平面ABC.
(2)在线段CD上是否存在一点P,使得平面平面ABC?并说明理由.
20.(本题10分)
在△ABC中,角A,B,C的对边分别为a,b,c,且满足.
(1)求角C的大小;
(2)若△ABC的面积为,,求c和的值.
21.(本题10分)
在四棱锥P−ABCD中,已知,,,,,,E是线段PB上的点.
(1)求证:底面ABCD;
(2)是否存在点E使得三棱锥P−ACE的体积为?若存在,求出的值;若不存在,请说明理由.
天津市第二耀华中学2023-2024学年高一下学期期中考试数学试卷: 这是一份天津市第二耀华中学2023-2024学年高一下学期期中考试数学试卷,共4页。
天津市耀华中学2023-2024学年高三下学期寒假验收考数学试卷及答案: 这是一份天津市耀华中学2023-2024学年高三下学期寒假验收考数学试卷及答案,共9页。
31,天津市耀华中学2023-2024学年高一上学期期末学情调研数学试卷: 这是一份31,天津市耀华中学2023-2024学年高一上学期期末学情调研数学试卷,共4页。