终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    【三轮冲刺】高考数学(大题专练)04 圆锥曲线(原卷版)

    立即下载
    加入资料篮
    【三轮冲刺】高考数学(大题专练)04 圆锥曲线(原卷版)第1页
    【三轮冲刺】高考数学(大题专练)04 圆锥曲线(原卷版)第2页
    【三轮冲刺】高考数学(大题专练)04 圆锥曲线(原卷版)第3页
    还剩17页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【三轮冲刺】高考数学(大题专练)04 圆锥曲线(原卷版)

    展开

    这是一份【三轮冲刺】高考数学(大题专练)04 圆锥曲线(原卷版),共20页。试卷主要包含了已知双曲线,已知椭圆E等内容,欢迎下载使用。
    圆锥曲线问题是高考的热点问题之一,多数情况在倒数第二题出现,难度为中高档题型。纵观近几年高考试卷,圆锥曲线的大题主要有以下几种类型:已知过定点的直线与圆锥曲线相交于不同两点,求直线方程或斜率、多边形面积或面积最值、证明直线过定点或点在定直线上等。各种类型问题结构上具有一定的特征,解答方法也有一定的规律可循。
    题型一:最值问题
    (2024·安徽合肥·统考一模)已知抛物线的焦点为,过点的直线与交于两点,过作的切线,交于点,且与轴分别交于点.
    (1)求证:;
    (2)设点是上异于的一点,到直线的距离分别为,求的最小值.
    1.(2024·吉林·校联考模拟预测)已知椭圆的左、右焦点分别为,,过的直线与交于P,Q两点,的周长为8,焦距为.
    (1)求椭圆的方程;
    (2)若直线与圆相切,且与交于不同的两点R,S,求的取值范围.
    2.(2023·山西临汾·校考模拟预测)已知抛物线C的顶点为坐标原点O,焦点在x轴上,直线l:交C于M,Q两点,且.
    (1)求C的方程;
    (2)若点P是C的准线上的一点,过点P作C的两条切线PA,PB,其中A,B为切点,求点O到直线AB的距离的最大值.
    题型二:参数范围问题
    (2023·上海浦东新·高三建平中学校考阶段练习)已知分别是椭圆的左、右顶点,过点、斜率为的直线交椭圆于两个不同的点.
    (1)求椭圆的焦距和离心率;
    (2)若点落在以线段为直径的圆的外部,求的取值范围;
    (3)若,设直线分别交轴于点,求的取值范围.
    1.(2023·四川成都·统考二模)已知,分别为椭圆的左、右焦点,与椭圆C有相同焦点的双曲线在第一象限与椭圆C相交于点P,且.
    (1)求椭圆C的方程;
    (2)设直线与椭圆C相交于A,B两点,O为坐标原点,且.若椭圆C上存在点E,使得四边形OAED为平行四边形,求m的取值范围.
    2.(2024·江西南昌·高三江西师大附中校考开学考试)已知抛物线:上一点的纵坐标为3,点到焦点距离为5.
    (1)求抛物线的方程:
    (2)过点作直线交于A,B两点,过点A,B分别作C的切线与,与相交于点,过点A作直线垂直于,过点作直线垂直于,与相交于点E,、、、分别与轴交于点P、Q、R、S.记、、、的面积分别为、、、.若,求实数的取值范围.
    题型三:定值问题
    (2024·四川雅安·高三雅安中学校联考开学考试)已知椭圆的离心率为,且椭圆的短轴长为.
    (1)求椭圆的方程.
    (2)设是椭圆上第一象限内的一点,是椭圆的左顶点,是椭圆的上顶点,直线与轴相交于点,直线与轴相交于点.记的面积为,的面积为.证明:为定值.
    1.(2024·安徽·高三校联考阶段练习)已知双曲线(,)的左顶点为,过点的动直线l交C于P,Q两点(均不与A重合),当l与x轴垂直时,.
    (1)求C的方程;
    (2)若直线AP和AQ分别与直线交于点M和N,证明:为定值.
    2.(2023·宁夏石嘴山·高三石嘴山市第三中学校考期中)已知抛物线:的焦点为,抛物线上存在一点到焦点的距离等于.
    (1)求抛物线的方程;
    (2)过点的直线交抛物线于两不同点,交轴于点,已知,,求证:为定值.
    题型四:过定点问题
    (2024·海南·高三校联考期末)已知椭圆的离心率为,上顶点为.
    (1)求的方程;
    (2)设的右顶点为,点是上的两个动点,且直线与的斜率之和为3,证明:直线过定点.
    1.(2024·广东湛江·统考一模)已知为双曲线上一点,分别为双曲线的左、右顶点,且直线与的斜率之和为.
    (1)求双曲线的方程;
    (2)不过点的直线与双曲线交于两点,若直线的倾斜角分别为和,且,证明:直线过定点.
    2.(2024·北京海淀·高三首都师范大学附属中学校考开学考试)已知动圆过点,且被轴截得的线段长为4,记动圆圆心的轨迹为曲线.过点的直线交于两点,过与垂直的直线交于两点,其中在轴上方,分别为的中点.
    (1)求曲线的方程;
    (2)证明:直线过定点;
    题型五:定直线问题
    (2024·贵州贵阳·贵阳一中校考一模)已知椭圆的上、下顶点分别是,,点(异于,两点)在椭圆上,直线与的斜率之积为,椭圆的短轴长为.
    (1)求的标准方程;
    (2)已知,直线与椭圆的另一个交点为,且直线与相交于点,证明:点在定直线上.
    1.(2024·河南周口·高三统考阶段练习)已知双曲线C:实轴的左、右端点分别为,,点在C上,且,的斜率之积为.
    (1)求C的方程;
    (2)已知直线l与C交于M,N两点(均与P不重合),与直线交于点Q,且点M,N在直线的两侧,若,线段MN的中点为R,证明:点R在一条定直线上.
    2.(2023·海南·校联考模拟预测)已知抛物线的焦点为,直线:与直线与抛物线分别交于点和点.
    (1)若,求的面积;
    (2)若直线与交于点,证明:点在定直线上.
    题型六:动点轨迹问题
    (2024·全国·模拟预测)已知椭圆的离心率为,左、右顶点分别为和,M是椭圆C上一点,且面积的最大值为.
    (1)求椭圆C的标准方程;
    (2)记O为坐标原点,当点M与椭圆C的顶点不重合时,过点M分别作直线OM,MF,其中直线MF不过坐标原点,且不与坐标轴平行,直线OM,MF与椭圆C交于异于点M的E,F两点,直线与直线相交于点D,直线OD与直线MF相交于点N,求点N的轨迹方程.
    1.(2024·河南郑州·统考一模)已知点是双曲线的上顶点.
    (1)若点的坐标为,延长交双曲线于点,求点的坐标;
    (2)双曲线与直线有唯一的公共点,过点且与垂直的直线分别交轴,轴于两点,当点运动时,求点的轨迹方程.
    2.(2023·辽宁朝阳·高三校联考阶段练习)已知抛物线的焦点为F,且A,B,C三个不同的点均在上.
    (1)若直线AB的方程为,且点F为的重心,求p的值;
    (2)设,直线AB经过点,直线BC的斜率为1,动点D在直线AC上,且,求点D的轨迹方程.
    题型七:角度关系证明问题
    (2024·湖南长沙·统考一模)已知双曲线与直线:()有唯一的公共点,直线与双曲线的两条渐近线分别交于,两点,其中点,在第一象限.
    (1)探求参数,满足的关系式;
    (2)若为坐标原点,为双曲线的左焦点,证明:.
    1.(2024·云南昆明·昆明一中校考模拟预测)一动圆圆E与圆外切,同时与圆内切.
    (1)求动圆圆心E的轨迹方程;
    (2)设A为E的右顶点,若直线与x轴交于点M,与E相交于点B,C(点B在点M,C之间),若N为线段上的点,且满足,证明:.
    2.(2024·北京·高三阶段练习)已知点,集合,点,且对于S中任何异于P的点Q,都有.
    (1)证明:P在椭圆上;
    (2)求P的坐标;
    (3)设椭圆的焦点为,证明:.
    参考公式:.
    题型八:向量共线问题
    (2022·全国·高三专题练习)若抛物线的焦点为,点在抛物线上,且.
    (1)求抛物线的方程;
    (2)过点的直线交抛物线于两点,点A关于轴的对称点是,证明:三点共线.
    1.(2024·山东威海·高三统考期末)已知椭圆的左、右顶点分别为,,右焦点的坐标为,过点作直线交于,两点(异于,),当垂直于轴时,.
    (1)求的标准方程;
    (2)直线交直线于点,证明:,,三点共线.
    2.(2023·山东·高三校联考阶段练习)已知圆,点P是圆C上的动点,点是圆C内一点,线段的垂直平分线交于点Q,当点P在圆C上运动时点Q的轨迹为E.
    (1)求E的方程;
    (2)设M,N是曲线E上的两点,直线与曲线相切.证明:当时,三点共线.
    题型九:存在性问题探究
    (2024·天津南开·高三南开中学校考阶段练习)已知椭圆C:,若椭圆的焦距为4且经过点,过点的直线交椭圆于P,Q两点.
    (1)求椭圆方程;
    (2)求面积的最大值,并求此时直线的方程;
    (3)若直线与x轴不垂直,在x轴上是否存在点使得恒成立?若存在,求出s的值;若不存在,说明理由.
    1.(2024·内蒙古赤峰·高三校考开学考试)已知双曲线的离心率为,右焦点为.
    (1)求双曲线的标准方程;
    (2)过点的直线与双曲线的右支交于两点,在轴上是否存在点, 使得为定值?若存在,求出该定值;若不存在,请说明理由.
    2.(2024·山西太原·高三统考期末)已知抛物线的准线与轴相交于点,过抛物线焦点的直线与相交于两点,面积的最小值为4.
    (1)求抛物线的方程;
    (2)若过点的动直线交于,两点,试问抛物线上是否存在定点,使得对任意的直线,都有.若存在,求出点的坐标;若不存在,则说明理由.
    题型十:“非对称”韦达定理
    (2024·内蒙古锡林郭勒盟·高三统考开学考试)已知椭圆E:经过点,右焦点为,A,B分别为椭圆E的上顶点和下顶点.
    (1)求椭圆E的标准方程;
    (2)已知过且斜率存在的直线l与椭圆E交于C、D两点,直线BD与直线AC的斜率分别为k1和k2,求的值.
    1.(2024·吉林白山·统考一模)已知分别为双曲线的左、右顶点,为双曲线上异于的任意一点,直线、斜率乘积为,焦距为.
    (1)求双曲线的方程;
    (2)设过的直线与双曲线交于,两点(不与重合),记直线,的斜率为,,证明:为定值.
    2.(2024·全国·高三专题练习)已知椭圆:,为椭圆的右焦点,三点,,中恰有两点在椭圆上.
    (1)求椭圆的标准方程;
    (2)设点为椭圆的左右端点,过点作直线交椭圆于,两点(不同于),求证:直线与直线的交点在定直线上运动,并求出该直线的方程.
    1.(2024·云南昆明·昆明一中校联考一模)已知椭圆:的短轴长等于,离心率.
    (1)求椭圆的方程;
    (2)过右焦点的直线与椭圆交于、两点,线段的垂直平分线交轴于点,证明:为定值.
    2.(2024·四川巴中·统考一模)已知椭圆的离心率为,左右顶点分别为A,B,G为C的上顶点,且的面积为2.
    (1)求椭圆C的方程;
    (2)过点的动直线与C交于M,N两点.证明:直线与的交点在一条定直线上.
    3.(2024·湖北武汉·统考模拟预测)已知双曲线:的左右焦点为,,其右准线为,点到直线的距离为,过点的动直线交双曲线于,两点,当直线与轴垂直时,.
    (1)求双曲线的标准方程;
    (2)设直线与直线的交点为,证明:直线过定点.
    4.(2024·辽宁·校联考一模)已知双曲线:(,)的右顶点,斜率为1的直线交于、两点,且中点.
    (1)求双曲线的方程;
    (2)证明:为直角三角形;
    (3)若过曲线上一点作直线与两条渐近线相交,交点为,,且分别在第一象限和第四象限,若,,求面积的取值范围.
    5.(2023·全国·高三贵溪市实验中学校联考阶段练习)已知抛物线,垂直于轴的直线与圆相切,且与交于不同的两点.
    (1)求p;
    (2)已知,过的直线与抛物线交于两点,过作直线的垂线,与直线分别交于两点,求证:.
    6.(2024·四川绵阳·统考二模)己知直线与抛物线交于A,B两点,F为E的焦点,直线FA,FB的斜率之和为0.
    (1)求E的方程;
    (2)直线分别交直线于两点,若,求k的取值范围.
    7.(2023·贵州贵阳·高三贵阳一中校考阶段练习)已知椭圆C:()的离心率为,左顶点A到右焦点的距离为3.
    (1)求椭圆的方程;
    (2)设直线与椭圆交于不同两点,(不同于A),且直线和的斜率之积与椭圆的离心率互为相反数,求在上的射影的轨迹方程.
    8.(2024·北京东城·高三统考期末)已知椭圆的右焦点为,左、右顶点分别为,.
    (1)求椭圆的方程;
    (2)设是坐标原点,是椭圆上不同的两点,且关于轴对称,分别为线段的中点,直线与椭圆交于另一点.证明:三点共线.
    9.(2024·湖南邵阳·统考一模)已知椭圆的短轴长为,左顶点到左焦点的距离为1.
    (1)求椭圆的标准方程;
    (2)如图所示,点A是椭圆的右顶点,过点的直线与椭圆交于不同的两点,且都在轴的上方,点的坐标为.证明:.
    10.(2024·内蒙古锡林郭勒盟·高三统考开学考试)已知椭圆E:经过点,右焦点为.
    (1)求E的标准方程;
    (2)已知A,B分别为E的上顶点和下顶点,过点且斜率存在的直线l与E交于C、D两点,证明:直线AC与直线BD的交点M在定直线上.
    1.(2023·北京·统考高考真题)已知椭圆的离心率为,A、C分别是E的上、下顶点,B,D分别是的左、右顶点,.
    (1)求的方程;
    (2)设为第一象限内E上的动点,直线与直线交于点,直线与直线交于点.求证:.
    2.(2023·全国·统考高考真题)已知直线与抛物线交于两点,且.
    (1)求;
    (2)设F为C的焦点,M,N为C上两点,,求面积的最小值.
    3.(2023·全国·统考高考真题)已知椭圆的离心率是,点在上.
    (1)求的方程;
    (2)过点的直线交于两点,直线与轴的交点分别为,证明:线段的中点为定点.
    4.(2023·天津·统考高考真题)已知椭圆的左右顶点分别为,右焦点为,已知.
    (1)求椭圆的方程和离心率;
    (2)点在椭圆上(异于椭圆的顶点),直线交轴于点,若三角形的面积是三角形面积的二倍,求直线的方程.
    5.(2023·全国·统考高考真题)在直角坐标系中,点到轴的距离等于点到点的距离,记动点的轨迹为.
    (1)求的方程;
    (2)已知矩形有三个顶点在上,证明:矩形的周长大于.
    6.(2023·全国·统考高考真题)已知双曲线C的中心为坐标原点,左焦点为,离心率为.
    (1)求C的方程;
    (2)记C的左、右顶点分别为,,过点的直线与C的左支交于M,N两点,M在第二象限,直线与交于点P.证明:点在定直线上.
    7.(2022·全国·统考高考真题)已知双曲线的右焦点为,渐近线方程为.
    (1)求C的方程;
    (2)过F的直线与C的两条渐近线分别交于A,B两点,点在C上,且.过P且斜率为的直线与过Q且斜率为的直线交于点M.从下面①②③中选取两个作为条件,证明另外一个成立:
    ①M在上;②;③.
    注:若选择不同的组合分别解答,则按第一个解答计分.
    8.(2022·全国·统考高考真题)已知点在双曲线上,直线l交C于P,Q两点,直线的斜率之和为0.
    (1)求l的斜率;
    (2)若,求的面积.
    9.(2022·全国·统考高考真题)已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.
    (1)求E的方程;
    (2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.
    10.(2022·全国·统考高考真题)设抛物线的焦点为F,点,过F的直线交C于M,N两点.当直线MD垂直于x轴时,.
    (1)求C的方程;
    (2)设直线与C的另一个交点分别为A,B,记直线的倾斜角分别为.当取得最大值时,求直线AB的方程.
    求最值及问题常用的两种方法:
    (1)几何法:题中给出的条件有明显的几何特征,则考虑用几何图形性质来解决;
    (2)代数法:题中所给出的条件和结论的几何特征不明显,则可以建立目标函数,再求该函数的最值,求函数的最值常见的方法有基本不等式法、单调性法、导数法和三角换元法等。
    圆锥曲线的取范围问题
    1、利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;
    2、利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;
    3、利用隐含的不等关系建立不等式,从而求出参数的取值范围;
    4、利用已知的不等关系构造不等式,从而求出参数的取值范围;
    5、利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.
    圆锥曲线的定值问题
    (1)解析几何中的定值问题是指某些几何量(线段长度,图形面积,角度,直线的斜率等)的大小或某些代数表达式的值和题目中的参数无关,不依参数的变化而变化,而始终是一个确定的值,
    求定值问题常见的解题方法有两种:
    法一、先猜后证(特例法):从特殊入手,求出定值,再证明这个定值与变量无关;
    法二、引起变量法(直接法):直接推理、计算,并在计算推理过程中消去参数,从而得到定值。
    (2)直接法解题步骤
    第一步设变量:选择适当的量当变量,一般情况先设出直线的方程:或、点的坐标;
    第二步表示函数:要把证明为定值的量表示成上述变量的函数,一般情况通过题干所给的已知条件,进行正确的运算,将需要用到的所有中间结果(如弦长、距离等)用引入的变量表示出来;
    第三步定值:将中间结果带入目标量,通过计算化简得出目标量与引入的变量无关,是一个常数。
    圆锥曲线的定点问题
    1、参数无关法:把直线或者曲线方程中的变量,当作常数看待,把方程一端化为零,既然是过定点,那么这个方程就要对任意参数都成立,这时的参数的系数就要全部为零,这样就得到一个关于,的方程组,这个方程组的解所确定的点就是直线或曲线所过的定点。
    2、特殊到一般法:根据动点或动直线、动曲线的特殊情况探索出定点,再证明该定点与变量无关。
    3、关系法:对满足一定条件上的两点连结所得直线定点或满足一定条件的曲线过定点问题,可设直线(或曲线)上两点的坐标,利用坐标在直线(或曲线)上,建立点的坐标满足方程(组),求出相应的直线(或曲线),然后再利用直线(或曲线)过定点的知识求解。
    解决圆锥曲线中动点在定直线问题的解题步骤:
    1、联立直线与圆锥曲线的方程消元;2、挖掘图形中的对称性,解出动点横坐标或纵坐标;3、将动点的横纵坐标分别用参数表示,再消去参数;4、设点,将方程变形解出定直线方程。
    求解动点的轨迹方程的常见方法:
    (1)定义法:如果动点的运动规律符合我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件待定方程中的参数,即可求得轨迹方程;
    (2)直接法:如果动点的运动规律满足的等量关系容易建立,则可用点的坐标表示该等量关系,即可得轨迹方程;
    (3)相关点法:如果动点的运动是由另外一点的运动引发的,而点的运动规律已知(坐标满足某已知的曲线方程),则用点的坐标表示出相关点的坐标,然后将点的坐标代入已知曲线方程,即可得到点的轨迹方程;
    (4)交轨消参法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题通常通过解方程组得出交点(含参数)的坐标,再消去参数求得所求的轨迹方程.
    角度关系的证明往往转化为斜率问题或坐标问题,其中角相等问题优先考虑转为斜率之和为零处理,或考虑用向量进行计算。
    三点共线问题证明的解题策略一般有以下几种:
    (1)斜率法:若过任意两点的直线的斜率都存在,通过计算证明过任意两点的直线的斜率相等来证明三点共线;
    (2)距离法:计算出任意两点间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;
    (3)向量法:利用向量共线定理证明三点共线;
    (4)直线方程法:求出过其中两点的直线方程,在证明第三点也在该直线上;
    (5)点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,若距离为0,则三点共线;
    (6)面积法:通过计算求出以三点为三角形的面积,若面积为0,则三点共线,在处理三点共线问题,离不开解析几何的重要思想:“设而不求思想”。
    圆锥曲线存在性问题的解题技巧:
    1、特殊值(点)法:对于一些复杂的题目,可通过其中的特殊情况,解得所求要素的必要条件,然后再证明求得的要素也使得其他情况均成立;
    2、假设法:先假设存在,推证满足条件的结论。若结论正确,则存在;若结论不正确,则不存在。
    将直线的方程与圆锥曲线方程联立,消去,得到关键方程(设方程的两根和),在某些问题中,可能会涉及到需计算两根系数不相同的代数式。例如,运算过程中出现了、等结构,且无法直接通过合并同类项化为系数相同的情况处理,像这种非对称的结构,通常是无法根据伟大定理直接求出的,此时一般的处理技巧是抓住和的关系将两根积向两根和转化,通过局部计算、整体约分的方法解决问题。

    相关试卷

    【三轮冲刺】高考数学(大题专练)07 新定义题型(原卷版):

    这是一份【三轮冲刺】高考数学(大题专练)07 新定义题型(原卷版),共21页。试卷主要包含了,则称集合为集合的一个元基底,,,,,其中.,“让式子丢掉次数”,约数,又称因数.它的定义如下,为,,,四点的交比,记为,如图1,已知,,,,,.等内容,欢迎下载使用。

    【三轮冲刺】高考数学(大题专练)06 概率统计(原卷版):

    这是一份【三轮冲刺】高考数学(大题专练)06 概率统计(原卷版),共30页。试卷主要包含了,如下表等内容,欢迎下载使用。

    【三轮冲刺】高考数学(大题专练)05 函数与导数(原卷版):

    这是一份【三轮冲刺】高考数学(大题专练)05 函数与导数(原卷版),共17页。试卷主要包含了已知函数.,已知.,已知函数,已知,,设函数.,设函数,其中为自然对数的底数,等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map