河北省部分高中2024届高三下学期二模考试数学试题(原卷版+解析版)
展开注意事项:
1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题吋,将答案写在答题卡上.写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回.
4.本试卷主要考试内容:全部高考内容.
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 已知集合,,则( )
A. B. C. D.
2. 已知复数实数,则( )
A. B. C. D. 2
3. 已知随机变量服从正态分布,则“”是“”( )
A. 充分不必要条件B. 必要不充分条件
C 充要条件D. 既不充分也不必要条件
4. 已知一个底面内口直径为的圆柱体玻璃杯中盛有高为的水,向该杯中放入一个半径为的实心冰球和一个半径为的实心钢球,待实心冰球融化后实心钢球恰好淹没在水中(实心钢球与杯中水面、杯底均相切),若实心冰球融化为水前后的体积变化忽略不计,则实心钢球的表面积为( )
A. B. C. D.
5. 已知点,都是图象上的点,点到轴的距离均为1,把的图像向左平移个单位长度后,点分别平移到点,且点关于原点对称,则的值不可能是( )
A. 3B. 5C. 10D. 11
6. 已知,是圆上的两个动点,且,若点满足,点在直线上,则的最小值为( )
A. B. C. D.
7. 某地计划对如图所示的半径为的直角扇形区域按以下方案进行扩建改造,在扇形内取一点使得,以为半径作扇形,且满足,其中,,则图中阴影部分的面积取最小值时的大小为( )
A. B. C. D.
8. 已知函数,,正实数a,b,c满足,,,则( )
A. B. C. D.
二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9. 已知为坐标原点,焦点为的抛物线过点,过且与垂直的直线与抛物线的另一交点为,则( )
A. B.
C. D. 直线与抛物线的准线相交于点
10. 已知,,其中,.若,则( )
A. B.
C. D.
11. 一般地,如果一个四面体存在由同一点出发的三条棱两两垂直,我们把这种四面体叫做直角四面体,记该点为直角四面体的直角顶点,两两垂直的三条棱叫直角四面体的直角棱,任意两条直角棱确定的面叫直角四面体的直角面,除三个直角面外的一个面叫斜面.若一个直角四面体的三条直角棱长分别为,,,直角顶点到斜面的距离为,其内切球的半径为,三个直角面的面积分别为,,,三个直角面与斜面所成的角分别为,,,斜面的面积为,则( )
A. 直角顶点在斜面上的射影是斜面的内心B.
C. D.
三、填空题:本题共3小题,每小题5分,共15分.
12. 记样本数据10,18,8,4,16,24,6,8,32的中位数为a,平均数为b,则=______.
13. 已知等差数列的前项积为,,,,则当取得最小值时,______.
14. 阅读下列两则材料:
材料1.圆锥曲线的轴与顶点的定义:对平面内一圆锥曲线,若存在直线,使得对于曲线上任意一点,要么点在直线上,要么曲线上存在与点相异的一点,使得点与点关于直线对称,则称曲线关于直线对称,直线称为曲线的轴,曲线与其轴的交点称为曲线的顶点.
材料2.某课外学习兴趣小组通过对反比例函数的图象的研究发现:反比例函数的图象是双曲线,其两条渐近线为轴和轴,两条渐近线的夹角为.
①若将双曲线绕其中心适当旋转可使其渐近线变为直线,由此可求得其离心率为.
②若,则将与联立可求得双曲线的顶点坐标为,.
完成下列填空:
已知函数的图象是双曲线,直线和轴是双曲线的两条渐近线,则双曲线的位于第一象限的焦点的坐标为______.
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
15. 已知函数.
(1)求曲线在处的切线与坐标轴围成的三角形的周长;
(2)若函数的图象上任意一点关于直线的对称点都在函数的图象上,且存在,使成立,求实数的取值范围.
16. “九子游戏”是一种传统的儿童游戏,它包括打弹子、滚圈子、踢毽子、顶核子、造房子、拉扯铃子、刮片子、掼结子、抽陀子九种不同的游戏项目,某小学为丰富同学们的课外活动,举办了“九子游戏”比赛,所有的比赛项目均采用局胜的单败淘汰制,即先赢下局比赛者获胜.造房子游戏是同学们喜爱的项目之一,经过多轮淘汰后,甲、乙二人进入造房子游戏的决赛,已知每局比赛甲获胜的概率为,乙获胜的概率为.
(1)若,,设比赛结束时比赛的局数为,求的分布列与数学期望;
(2)设采用3局2胜制时乙获胜的概率为,采用5局3胜制时乙获胜的概率为,若,求的取值范围.
17. 如图,在四棱锥中,底面是菱形且,是边长为等边三角形,,,分别为,,的中点,与交于点.
(1)证明:平面;
(2)若,求平面与平面所成锐二面角的余弦值.
18. 已知椭圆的离心率.
(1)若椭圆过点,求椭圆的标准方程.
(2)若直线,均过点且互相垂直,直线交椭圆于两点,直线交椭圆于两点,分别为弦和的中点,直线与轴交于点,设.
(ⅰ)求;
(ⅱ)记,求数列的前项和.
19. 若内一点满足,则称点为的布洛卡点,为的布洛卡角.如图,已知中,,,,点为的布洛卡点,为的布洛卡角.
(1)若,且满足,求大小.
(2)若为锐角三角形.
(ⅰ)证明:.
(ⅱ)若平分,证明:.
河北省沧州市部分高中2024届高三下学期二模考试数学试题: 这是一份河北省沧州市部分高中2024届高三下学期二模考试数学试题,共15页。试卷主要包含了选择题的作答,非选择题的作答,在的展开式中,项的系数为,若,则下列大小关系正确的是,已知实数满足,则等内容,欢迎下载使用。
河北省部分示范性高中2024届高三下学期一模数学试题(原卷版+解析版): 这是一份河北省部分示范性高中2024届高三下学期一模数学试题(原卷版+解析版),文件包含河北省部分示范性高中2024届高三下学期一模数学试题原卷版docx、河北省部分示范性高中2024届高三下学期一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
云南省昆明市部分学校2024届高三下学期二模考试数学试题(原卷版+解析版): 这是一份云南省昆明市部分学校2024届高三下学期二模考试数学试题(原卷版+解析版),文件包含云南省昆明市部分学校2024届高三下学期二模考试数学试题原卷版docx、云南省昆明市部分学校2024届高三下学期二模考试数学试题解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。