广西百色市平果市铝城中学2023-2024学年高二下学期4月月考测试数学试卷(原卷版+解析版)
展开一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 已知,则下列说法正确的是( )
A. B.
C. D.
2. 已知复数满足,则的虚部为( )
A. B. C. D.
3. 已知直线:,:,则“”是“”( )条件
A. 必要不充分B. 充分不必要
C. 充要D. 既不充分也不必要
4. 在中,,,点在线段上.当取得最小值时,( )
A. B. C. D.
5. 如图,在三棱柱中,底面ABC,,点D是棱上点,,若截面分这个棱柱为两部分,则这两部分的体积比为( )
A. 1:2B. 4:5C. 4:9D. 5:7
6. 已知函数,将的图象上所有点的横坐标缩短为原来的(纵坐标不变),再将所得图象向右平移个单位长度,得到函数的图象,若为偶函数,则θ的最小值为( )
A. B. C. D.
7. 函数的部分图象大致为( )
A. B.
C. D.
8. 在欧几里得生活的时期,人们就发现了椭圆有如下的光学性质:由椭圆一焦点射出的光线经椭圆内壁反射后必经过另焦点我有一椭圆,从一个焦点发出的一条光线经椭圆内壁上一点反射后经过另一个焦点,若,且,则椭圆的离心率为( )
A. B. C. D.
二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,答案有两个选项只选一个对得3分,错选不得分;答案有三个选项只选一个对得2分,只选两个都对得4分,错选不得分.
9. 下列选项中正确的是( )
A. 若正实数x,y满足,则
B. 存在实数a,使得不等式成立
C. 若a、b为正实数,则
D. 不等式恒成立
10. 已知函数的部分图像如图所示,则( )
A. 在上单调递增
B. 在上有4个零点
C.
D. 将的图象向右平移个单位,可得的图象
11. 法国数学家加斯帕·蒙日被称为“画法几何创始人”、“微分几何之父”.他发现与椭圆相切的两条互相垂直的切线的交点的轨迹是以该椭圆中心为圆心的圆,这个圆称为该椭圆的蒙日圆.若椭圆:的蒙日圆为:,过上的动点M作的两条切线,分别与C交于P,Q两点,直线交于A,B两点,则( )
A.
B. 面积的最大值为
C. M到的左焦点的距离的最小值为
D. 若动点D在上,将直线,的斜率分别记为,,则
三、填空题:本题共3小题,每小题5分,共15分.
12. 若,则函数最小值为___________.
13. 椭圆左右焦点分别为为其上一点.的外接圆和内切圆的半径分别为,则的取值范围是___________.
14. 希腊著名数学家阿波罗尼斯与欧几里得、阿基米德齐名,他发现:“平面内到两个定点的距离之比为定值的点的轨迹是圆”.后来,人们将这个圆以他的名字命名,称为阿波罗尼斯圆,简称阿氏圆.已知在平面直角坐标系中,点,,点是满足的阿氏圆上的任一点,则该阿氏圆的方程为_______________________;若点为抛物线上的动点,点在轴上的射影为,则的最小值为________.
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
15. 已知数列的前顶和为.且.
(1)求数列的通项公式;
(2)在数列中,,求数列的前项和.
16. 如图,,分别是直径的半圆上的点,且满足,为等边三角形,且与半圆所成二面角的大小为,为的中点.
(1)求证:平面;
(2)在弧上是否存在一点,使得直线与平面所成角的正弦值为?若存在,求出点到平面的距离;若不存在,说明理由.
17. 某省参加2021年普通高考统考报名的所有考生均可选考英语口试科目,考生自愿参加,不作为统一要求.考生卷面成绩采用百分制.某市从参加高三英语口语考试的1000名学生中随机抽取100名学生,将其英语口试成绩(均为整数)分成六组,…后得到如下部分频率分布直方图,已知第二组与第三组的频数之和等于第四组的频数.
(1)求频率分布直方图中未画出矩形的总面积;
(2)预估该市本次参加高三英语口语考试的1000名学生中成绩处于的人数;
(3)用分层抽样的方法在高分(不低于80分)段的学生中抽取一个容量为12的样本,将该样本看成一个总体,再从中任取3人,记这3人中成绩低于90分的人数为,求随机变量的分布列及数学期望.
18. 下面是某同学在学段总结中对圆锥曲线切线问题的总结和探索,现邀请你一起合作学习,请你思考后,将答案补充完整.
(1)圆上点处的切线方程为 ?请说明理由.
(2)椭圆上一点处的切线方程为 ?
(3)是椭圆外一点,过点作椭圆的两条切线,切点分别为A,B,如图,则直线的方程是 ?这是因为在,两点处,椭圆的切线方程为和.两切线都过点,所以得到了和,由这两个“同构方程”得到了直线的方程;
(4)问题(3)中两切线,斜率都存在时,设它们方程的统一表达式为,由,得,化简得,得.若,则由这个方程可知点一定在一个圆上,这个圆的方程为 ?
19. 已知函数.
(1)求函数极值并画出函数的大致图像;
(2)求证:.
广西百色市平果市铝城中学2023-2024学年高一下学期4月月考测试数学试卷(原卷版+解析版): 这是一份广西百色市平果市铝城中学2023-2024学年高一下学期4月月考测试数学试卷(原卷版+解析版),文件包含广西百色市平果市铝城中学2023-2024学年高一下学期4月月考测试数学试卷原卷版docx、广西百色市平果市铝城中学2023-2024学年高一下学期4月月考测试数学试卷解析版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
广西百色市平果市铝城中学2024届高三下学期4月月考数学试卷(原卷版+解析版): 这是一份广西百色市平果市铝城中学2024届高三下学期4月月考数学试卷(原卷版+解析版),文件包含广西百色市平果市铝城中学2024届高三下学期4月月考数学试卷原卷版docx、广西百色市平果市铝城中学2024届高三下学期4月月考数学试卷解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
广西百色市平果市铝城中学2024届高三下学期3月份测试数学试卷(原卷版+解析版): 这是一份广西百色市平果市铝城中学2024届高三下学期3月份测试数学试卷(原卷版+解析版),文件包含精品解析广西百色市平果市铝城中学2024届高三下学期3月份测试数学试卷原卷版docx、精品解析广西百色市平果市铝城中学2024届高三下学期3月份测试数学试卷解析版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。