年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2023届新高考数学二轮专题复习——概率与统计热门考题汇编(学生版)

    立即下载
    加入资料篮
    2023届新高考数学二轮专题复习——概率与统计热门考题汇编(学生版)第1页
    2023届新高考数学二轮专题复习——概率与统计热门考题汇编(学生版)第2页
    2023届新高考数学二轮专题复习——概率与统计热门考题汇编(学生版)第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届新高考数学二轮专题复习——概率与统计热门考题汇编(学生版)

    展开

    这是一份2023届新高考数学二轮专题复习——概率与统计热门考题汇编(学生版),共19页。试卷主要包含了重伯努利试验的概念,重伯努利试验具有如下共同特征,二项分布,一般地,可以证明等内容,欢迎下载使用。
    一.分类加法计数原理和分步乘法计数原理
    二.常见的一些排列问题及其解决方法
    三.分组分配问题
    (1)分组问题属于“组合”问题,常见的分组问题有三种:
    ①完全均匀分组,每组的元素个数均相等;
    ②部分均匀分组,应注意不要重复,有n组均匀,最后必须除以n!;
    ③完全非均匀分组,这种分组不考虑重复现象.
    (2)分配问题属于“排列”问题,分配问题可以按要求逐个分配,也可以分组后再分配.
    四.二项式定理
    (1)一般地,对于任意正整数,都有:

    这个公式所表示的定理叫做二项式定理,等号右边的多项式叫做的二项展开式.
    式中的做二项展开式的通项,用表示,即通项为展开式的第项:,其中的系数(r=0,1,2,…,n)叫做二项式系数,
    (2)两个常用的二项展开式:
    ①()

    (3)二项式系数的性质(杨辉三角形)
    = 1 \* GB3 \* MERGEFORMAT ①每一行两端都是,即;其余每个数都等于它“肩上”两个数的和,即.
    = 2 \* GB3 \* MERGEFORMAT ②对称性每一行中,与首末两端“等距离”的两个二项式系数相等,即.
    = 3 \* GB3 \* MERGEFORMAT ③二项式系数和令,则二项式系数的和为,变形式.
    = 4 \* GB3 \* MERGEFORMAT ④奇数项的二项式系数和等于偶数项的二项式系数和在二项式定理中,令,
    则,
    从而得到:.
    = 5 \* GB3 \* MERGEFORMAT ⑤最大值:如果二项式的幂指数是偶数,则中间一项的二项式系数最大;
    如果二项式的幂指数是奇数,则中间两项,的二项式系数,相等且最大.
    ⑥求展开式中最大的项,一般采用待定系数法.设展开式中各项系数分别为,设第项系数最大,应有,从而解出来.
    (4)二项式系数和的计算与赋值
    五.二项分布
    1.重伯努利试验的概念
    只包含两个可能结果的试验叫做伯努利试验,将一个伯努利试验独立地重复进行次所组成的随机试验称为重伯努利试验.
    2.重伯努利试验具有如下共同特征
    (1)同一个伯努利试验重复做次;
    (2)各次试验的结果相互独立.
    3.二项分布
    一般地,在n重伯努利试验中,设每次试验中事件发生的概率为,用表示事件发生的次数,则的分布列为:,如果随机变量的分布列具有上式的形式,则称随机变量服从二项分布,记作
    4.一般地,可以证明:如果,那么.
    六.超几何分布
    超几何分布模型是一种不放回抽样,一般地,假设一批产品共有N件,其中有M件次品,从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为,k=m,m+1,m+2,…,r.
    其中n,N,M∈N* ,M≤N,n≤N,m=max{0,n-N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.
    2.超几何分布的期望
    E(X)=eq \f(nM,N)=np(p为N件产品的次品率).
    七.二项分布与超几何分布的区别
    1.看总体数是否给出,未给出或给出总体数较大一般考查二项分布,此时往往会出现重要的题眼“将频率视为概率”.
    2.看一次抽取抽中“次品”概率是否给出,若给出或可求出一般考查二项分布.
    3.看一次抽取的结果是否只有两个结果,若只有两个对立的结果或,一般考查二项分布.
    4.看抽样方法,如果是有放回抽样,一定是二项分布;若是无放回抽样,需要考虑总体数再确定.
    5.看每一次抽样试验中,事件是否独立,事件发生概率是否不变,若事件独立且概率不变,一定考查二项分布,这也是判断二项分布的最根本依据.
    6.把握住超几何分布与二项分布在定义叙述中的区别,超几何分布多与分层抽样结合,出现“先抽,再抽”的题干信息.
    3.二项分布
    一般地,在n重伯努利试验中,设每次试验中事件发生的概率为,用表示事件发生的次数,则的分布列为:,如果随机变量的分布列具有上式的形式,则称随机变量服从二项分布,记作
    4.一般地,可以证明:如果,那么.
    八. 二项分布的两类最值
    (1)当给定时,可得到函数,这个是数列的最值问题.
    .
    分析:当时,,随值的增加而增加;当时,
    ,随值的增加而减少.如果为正整数,当时,,此时这两项概率均为最大值.如果为非整数,而取的整数部分,则是唯一的最大值.
    注:在二项分布中,若数学期望为整数,则当随机变量等于期望时,概率最大.
    (2)当给定时,可得到函数,这个是函数的最值问题,
    这可以用导数求函数最值与最值点.
    分析:
    当时,由于当时,,单调递增,当时,,单调递减,故当时,取得最大值,.又当,当时,,从而无最小值.
    九.复杂概率计算
    (1)善于引入变量表示事件:可用“字母+变量角标”的形式表示事件“第几局胜利”,例如:表示“第局比赛胜利”,则表示“第局比赛失败”.
    (2)理解事件中常见词语的含义:
    A,B中至少有一个发生的事件为A∪B;A,B都发生的事件为AB;A,B都不发生的事件为eq \(A,\s\up6(-))eq \(B,\s\up6(-));A,B恰有一个发生的事件为Aeq \(B,\s\up6(-))∪eq \(A,\s\up6(-))B;A,B至多一个发生的事件为Aeq \(B,\s\up6(-))∪eq \(A,\s\up6(-))B∪eq \(A,\s\up6(-))eq \(B,\s\up6(-)).
    善于“正难则反”求概率:若所求事件含情况较多,可以考虑求对立事件的概率,再用解出所求事件概率.
    十.条件概率
    1.条件概率定义
    一般地,设为两个随机事件,且,我们称为在事件发生的条件下,事件发生的条件概率,简称条件概率.
    可以看到,的计算,亦可理解为在样本空间中,计算的概率. 于是就得到计算条件概率的第二种途,即
    特别地,当时,即相互独立,则.
    2.条件概率的性质
    设,全样本空间定义为,则
    (1);
    (2)如果与是两个互斥事件,则;
    (3)设事件和互为对立事件,则.
    十一.全概率公式与贝叶斯公式
    在全概率的实际问题中我们经常会碰到一些较为复杂的概率计算,这时,我们可以用 “化整为零”的思想将它们分解为一些较为容易的情况分别进行考虑
    一般地,设A1,A2,…,An是一组两两互斥的事件,,且,i=1,2,…,n,则对任意的事件,有.
    我们称上面的公式为全概率公式,全概率公式是概率论中最基本的公式之一.
    2.贝叶斯公式
    设A1,A2,…,An是一组两两互斥的事件,,且,i=1,2,…,n,则对任意事件,,
    有 ,在贝叶斯公式中,和分别称为先验概率和后验概率.
    十二.一维随机游走与马尔科夫链
    1.转移概率:对于有限状态集合,定义:为从状态到状态的转移概率.
    2.马尔可夫链:若,即未来状态只受当前状态的影响,与之前的无关.
    3.一维随机游走模型.(公众号:凌晨讲数学)
    设数轴上一个点,它的位置只能位于整点处,在时刻时,位于点,下一个时刻,它将以概率或者()向左或者向右平移一个单位. 若记状态表示:在时刻该点位于位置,那么由全概率公式可得:
    另一方面,由于,代入上式可得:
    .
    进一步,我们假设在与处各有一个吸收壁,当点到达吸收壁时被吸收,不再游走.于是,.随机游走模型是一个典型的马尔科夫过程.
    进一步,若点在某个位置后有三种情况:向左平移一个单位,其概率为,原地不动,其概率为,向右平移一个单位,其概率为,那么根据全概率公式可得:
    有了这样的理论分析,下面我们看全概率公式及以为随机游走模型在2019年全国1卷中的应用.
    十三.统计
    1.线性回归方程与最小二乘法
    (1)回归直线方程过样本点的中心,是回归直线方程最常用的一个特征
    (2)我们将称为关于的线性回归方程,也称经验回归函数或经验回归公式,其图形称为经验回归直线.这种求经验回归方程的方法叫做最小二乘法,求得的叫做b,a的最小二乘估计(leastsquaresestimate),其中
    (3)残差的概念
    对于响应变量,通过观测得到的数据称为观测值,通过经验回归方程得到的称为预测值,观测值减去预测值称为残差.残差是随机误差的估计结果,通过残差的分析可以判断模型刻画数据的效果,以及判断原始数据中是否存在可疑数据等,这方面工作称为残差分析.
    (4)刻画回归效果的方式
    (i)残差图法:作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图.若残差点比较均匀地落在水平的带状区域内,带状区域越窄,则说明拟合效果越好.
    (ii)残差平方和法:残差平方和,残差平方和越小,模型拟合效果越好,残差平方和越大,模型拟合效果越差.
    (iii)利用刻画回归效果:决定系数是度量模型拟合效果的一种指标,在线性模型中,它代表解释变量客立预报变量的能力.,越大,即拟合效果越好,越小,模型拟合效果越差.
    第二部分.试题汇编
    1.(福建省福州市普通高中2023届高三毕业班质量检测(二检))若二项式展开式中存在常数项,则正整数n可以是( )
    A.3B.5C.6D.7
    2.(福建省福州市普通高中2023届高三毕业班质量检测(二检))为培养学生“爱读书、读好书、普读书”的良好习惯,某校创建了人文社科类、文学类、自然科学类三个读书社团.甲、乙两位同学各自参加其中一个社团,每位同学参加各个社团的可能性相同,则这两位同学恰好参加同一个社团的概率为( )
    A.B.C.D.
    3.(福建省厦门市2023届高三下学期第二次质量检测)的展开式中x2y3项的系数等于80,则实数a=( )
    A.2B.±2C.D.±
    4.(福建省厦门市2023届高三下学期第二次质量检测)厦门山海健康步道云海线全长约23公里,起于东渡邮轮广场,终于观音山沙滩,沿线申联贸鸟湖、狐尾山、仙岳山、园山、薛岭山、虎头山、金山、湖边水库、五缘湾、虎仔山、观音山等“八山三水”.市民甲计划从“八山三水”这11个景点中随机选取相邻的3个游览,则选取的景点中有“水”的概率为( )
    A.B.C.D.
    5.(广东省2023届高考一模)如图,在两行三列的网格中放入标有数字的六张卡片,每格只放一张卡片,则“只有中间一列两个数字之和为5”的不同的排法有( )
    A.96种B.64种C.32种D.16种
    6.(广东省佛山市2023届高三教学质量检测(一))已知事件,,的概率均不为,则的充要条件是( )
    A.B.
    C.D.
    7.(广东省广州市2023届高三综合测试(一))“回文”是古今中外都有的一种修辞手法,如“我为人人,人人为我”等,数学上具有这样特征的一类数称为“回文数”、“回文数”是指从左到右与从右到左读都一样的正整数,如121,241142等,在所有五位正整数中,有且仅有两位数字是奇数的“回文数”共有( )
    A.100个B.125个C.225个D.250个
    8.(广东省深圳市2023届高三第一次调研)安排5名大学生到三家企业实习,每名大学生只去一家企业,每家企业至少安排1名大学生,则大学生甲、乙到同一家企业实习的概率为( )
    A.B.C.D.
    9.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)一组数据按照从小到大的顺序排列为1,2,3,5,6,8,记这组数据的上四分位数为n,则二项式展开式的常数项为( )
    A.B.60C.120D.240
    10.(江苏省八市(南通、泰州、扬州、徐州、淮安、连云港、宿迁、盐城)2023届高三二模)已知的展开式中各项系数和为243,则展开式中常数项为( )
    A.60B.80C.D.
    11.(江苏省南京市、盐城市2023届高三下学期一模)某种品牌手机的电池使用寿命X(单位:年)服从正态分布,且使用寿命不少于2年的概率为0.9,则该品牌手机电池至少使用6年的概率为( )
    A.0.9B.0.7C.0.3D.0.1
    12.(江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一))“绿水青山,就是金山银山”,随着我国的生态环境越来越好,外出旅游的人越来越多.现有两位游客慕名来江苏旅游,他们分别从“太湖鼋头渚、苏州拙政园、镇江金山寺、常州恐龙园、南京夫子庙、扬州瘦西湖”这6个景点中随机选择1个景点游玩.记事件A为“两位游客中至少有一人选择太湖鼋头渚”,事件B为“两位游客选择的景点不同”,则( )
    A.B.C.D.
    13.(2023年湖北省八市高三(3月)联考) 甲、乙、丙、丁、戊5名志愿者参加新冠疫情防控志愿者活动,现有三个小区可供选择,每个志愿者只能选其中一个小区.则每个小区至少有一名志愿者,且甲不在小区的概率为( )
    A. B. C. D.
    14.(山东省济南市2023届高三下学期3月一模)从正六边形的6个顶点中任取3个构成三角形,则所得三角形是直角三角形的概率为( )
    A.B.C.D.
    15.(山东省青岛市2023届高三下学期第一次适应性检测)某次考试共有4道单选题,某学生对其中3道题有思路,1道题完全没有思路.有思路的题目每道做对的概率为0.8,没有思路的题目,只好任意猜一个答案,猜对的概率为0.25.若从这4道题中任选2道,则这个学生2道题全做对的概率为( )
    A.0.34B.0.37C.0.42D.0.43
    16.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)已知随机变量服从正态分布,且,则( )
    A.B.C.D.
    17.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)展开式中二项式系数最大的是,则不可能是( )
    A.8B.9C.10D.11
    18.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)一枚质地均匀的骰子,其六个面的点数分别为.现将此骰子任意抛掷2次,正面向上的点数分别为.设,设,记事件“”,“”,则( )
    A.B.C.D.
    二.多选题
    19.(福建省厦门市2023届高三下学期第二次质量检测)李明每天7:00从家里出发去学校,有时坐公交车,有时骑自行车.他各记录了50次坐公交车和骑自行车所花的时间,经数据分析得到:坐公交车平均用时30分钟,样本方差为36;自行车平均用时34分钟,样本方差为4.假设坐公交车用时X和骑自行车用时Y都服从正态分布,则( )
    A.P(X>32)>P(Y>32)
    B.P(X≤36)=P(Y≤36)
    C.李明计划7:34前到校,应选择坐公交车
    D.李明计划7:40前到校,应选择骑自行车
    20.(广东省佛山市2023届高三教学质量检测(一))中国共产党第二十次全国代表大会的报告中,一组组数据折射出新时代十年的非凡成就,数字的背后是无数的付出,更是开启新征程的希望.二十大首场新闻发布会指出近十年我国居民生活水平进一步提高,其中2017年全国居民恩格尔系数为29.39%,这是历史上中国恩格尔系数首次跌破30%.恩格尔系数是由德国统计学家恩斯特·恩格尔提出的,计算公式是“恩格尔系数”.恩格尔系数是国际上通用的衡量居民生活水平高低的一项重要指标,一般随居民家庭收入和生活水平的提高而下降,恩格尔系数达60%以上为贫困,50%~60%为温饱,40%~50%为小康,30%~40%为富裕,低于30%为最富裕.如图是近十年我国农村与城镇居民的恩格尔系数折线图,由图可知( )
    A.城镇居民2015年开始进入“最富裕”水平
    B.农村居民恩格尔系数的平均数低于32%
    C.城镇居民恩格尔系数的第45百分位数高于29%
    D.全国居民恩格尔系数等于农村居民恩格尔系数和城镇居民恩格尔系数的平均数
    21.(广东省广州市2023届高三综合测试(一))某校随机抽取了100名学生测量体重,经统计,这些学生的体重数据(单位:kg)全部介于45至70之间,将数据整理得到如图所示的频率分布直方图,则( )
    A.频率分布直方图中a的值为0.07
    B.这100名学生中体重低于60kg的人数为60
    C.据此可以估计该校学生体重的第78百分位数约为62
    D.据此可以估计该校学生体重的平均数约为62.5
    22.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)下列命题中正确的是( )
    A.若样本数据,,,的样本方差为3,则数据,,,的方差为7
    B.经验回归方程为时,变量x和y负相关
    C.对于随机事件A与B,,,若,则事件A与B相互独立
    D.若,则取最大值时
    23.(湖北省武汉市2023届高三下学期二月调研)在一次全市视力达标测试后,该市甲乙两所学校统计本校理科和文科学生视力达标率结果得到下表:
    定义总达标率为理科与文科学生达标人数之和与文理科学生总人数的比,则下列说法中正确的有( )A.乙校的理科生达标率和文科生达标率都分别高于甲校
    B.两校的文科生达标率都分别高于其理科生达标率
    C.若甲校理科生和文科生达标人数相同,则甲校总达标率为65%
    D.甲校的总达标率可能高于乙校的总达标率
    24.(湖北省武汉市2023届高三下学期二月调研)已知离散型随机变量服从二项分布,其中,记为奇数的概率为,为偶数的概率为,则下列说法中正确的有( )
    A. B.时,
    C.时,随着的增大而增大D.时,随着的增大而减小
    25.(2023年湖北省八市高三(3月)联考)连续抛掷一枚质地均匀的骰子两次,记录每次的点数,设事件 “第一次出现2点”,“第二次的点数小于5点”,“两次点数之和为奇数”,“两次点数之和为9”,则下列说法正确的有( )
    A. 与不互斥且相互独立B. 与互斥且不相互独立
    C. 与互斥且不相互独立D. 与不互斥且相互独立
    26.(山东省青岛市2023届高三下学期第一次适应性检测)在的展开式中,下列说法正确的是( )
    A.常数项是B.第四项和第六项的系数相等
    C.各项的二项式系数之和为D.各项的系数之和为
    三.填空题
    27.(福建省福州市普通高中2023届高三毕业班质量检测(二检))利率变化是影响某金融产品价格的重要因素经分析师分析,最近利率下调的概率为60%,利率不变的概率为40%.根据经验,在利率下调的情况下该金融产品价格上涨的概率为80%,在利率不变的情况下该金融产品价格上涨的概率为40%.则该金融产品价格上涨的概率为__________.
    28.(广东省佛山市2023届高三教学质量检测(一))在的展开式中,常数项为___________.(用数字作答)
    29.(广东省深圳市2023届高三第一次调研)的展开式中的系数为______(用数字做答).
    30.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)现有甲、乙两个口袋,其中甲口袋内装有三个1号球,两个2号球和一个3号球;乙口袋内装有两个1号球,一个2号球,一个3号球.第一次从甲口袋中任取1个球,将取出的球放入乙口袋中,第二次从乙口袋中任取一个球,则第二次取到2号球的概率为__________.
    31.(江苏省南京市、盐城市2023届高三下学期一模)编号为1,2,3,4的四位同学,分别就座于编号为1,2,3,4的四个座位上,每位座位恰好坐一位同学,则恰有两位同学编号和座位编号一致的坐法种数为___________.
    32.(江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一))的展开式中的系数为________.
    33. (2023年湖北省八市高三(3月)联考)已知二项式的展开式中只有第4项的二项式系数最大,且展开式中项的系数为20,则实数的值为__________.
    34.展开式中的常数项为__________.
    四.解答题
    35.(福建省福州市普通高中2023届高三毕业班质量检测(二检))脂肪含量(单位:%)指的是脂肪重量占人体总重量的比例.某运动生理学家在对某项健身活动参与人群的脂肪含量调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男性120位,其平均数和方差分别为14和6,抽取了女性90位,其平均数和方差分别为21和17.
    (1)试由这些数据计算出总样本的均值与方差,并对该项健身活动的全体参与者的脂肪含量的均值与方差作出估计.(结果保留整数)
    (2)假设全体参与者的脂肪含量为随机变量X,且X~N(17,2),其中2近似为(1)中计算的总样本方差.现从全体参与者中随机抽取3位,求3位参与者的脂肪含量均小于12.2%的概率.
    36.(福建省厦门市2023届高三下学期第二次质量检测)移动物联网广泛应用于生产制造、公共服务、个人消费等领域.截至2022年底,我国移动物联网连接数达18.45亿户,成为全球主要经济体中首个实现“物超人”的国家.右图是2018-2022年移动物联网连接数W与年份代码t的散点图,其中年份2018-2022对应的t分别为1~5.
    (1)根据散点图推断两个变量是否线性相关.计算样本相关系数(精确到0.01),并推断它们的相关程度;
    (2)(i)假设变量x与变量Y的n对观测数据为(x1,y1),(x2,y2),…,(xn,yn),两个变量满足一元线性回归模型 (随机误差).请推导:当随机误差平方和Q=取得最小值时,参数b的最小二乘估计.
    (ii)令变量,则变量x与变量Y满足一元线性回归模型利用(i)中结论求y关于x的经验回归方程,并预测2024年移动物联网连接数.
    附:样本相关系数,,,,
    37.(广东省2023届高考一模)某商场为了回馈广大顾客,设计了一个抽奖活动,在抽奖箱中放10个大小相同的小球,其中5个为红色,5个为白色.抽奖方式为:每名顾客进行两次抽奖,每次抽奖从抽奖箱中一次性摸出两个小球.如果每次抽奖摸出的两个小球颜色相同即为中奖,两个小球颜色不同即为不中奖.
    (1)若规定第一次抽奖后将球放回抽奖箱,再进行第二次抽奖,求中奖次数的分布列和数学期望.
    (2)若规定第一次抽奖后不将球放回抽奖箱,直接进行第二次抽奖,求中奖次数的分布列和数学期望.
    (3)如果你是商场老板,如何在上述问两种抽奖方式中进行选择?请写出你的选择及简要理由.
    38.(广东省佛山市2023届高三教学质量检测(一))近几年,随着生活水平的提高,人们对水果的需求量也随之增加,我市精品水果店大街小巷遍地开花,其中中华猕猴桃的口感甜酸、可口,风味较好,广受消费者的喜爱.在某水果店,某种猕猴桃整盒出售,每盒20个.已知各盒含0,1个烂果的概率分别为0.8,0.2.
    (1)顾客甲任取一盒,随机检查其中4个猕猴桃,若当中没有烂果,则买下这盒猕猴桃,否则不会购买此种猕猴桃.求甲购买一盒猕猴桃的概率;
    (2)顾客乙第1周网购了一盒这种猕猴桃,若当中没有烂果,则下一周继续网购一盒;若当中有烂果,则隔一周再网购一盒;以此类推,求乙第5周网购一盒猕猴桃的概率
    39.(广东省广州市2023届高三综合测试(一))为了拓展学生的知识面,提高学生对航空航天科技的兴趣,培养学生良好的科学素养,某校组织学生参加航空航天科普知识答题竞赛,每位参赛学生答题若干次,答题赋分方法如下:第1次答题,答对得20分,答错得10分:从第2次答题开始,答对则获得上一次答题得分的两倍,答错得10分.学生甲参加答题竞赛,每次答对的概率为,各次答题结果互不影响.
    (1)求甲前3次答题得分之和为40分的概率;
    (2)记甲第i次答题所得分数的数学期望为.
    ①写出与满足的等量关系式(直接写出结果,不必证明):
    ②若,求i的最小值.
    40.(广东省深圳市2023届高三第一次调研)某企业因技术升级,决定从2023年起实现新的绩效方案.方案起草后,为了解员工对新绩效方案是否满意,决定采取如下“随机化回答技术”进行问卷调查:
    一个袋子中装有三个大小相同的小球,其中1个黑球,2个白球.企业所有员工从袋子中有放回的随机摸两次球,每次摸出一球.约定“若两次摸到的球的颜色不同,则按方式Ⅰ回答问卷,否则按方式Ⅱ回答问卷”.
    方式Ⅰ:若第一次摸到的是白球,则在问卷中画“○”,否则画“×”;
    方式Ⅱ:若你对新绩效方案满意,则在问卷中画“○”,否则画“×”.
    当所有员工完成问卷调查后,统计画○,画×的比例.用频率估计概率,由所学概率知识即可求得该企业员工对新绩效方案的满意度的估计值.其中满意度.
    (1)若该企业某部门有9名员工,用X表示其中按方式Ⅰ回答问卷的人数,求X的数学期望;
    (2)若该企业的所有调查问卷中,画“○”与画“×”的比例为4:5,试估计该企业员工对新绩效方案的满意度.
    41.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)某市举行招聘考试,共有4000人参加,分为初试和复试,初试通过后参加复试.为了解考生的考试情况,随机抽取了100名考生的初试成绩,并以此为样本绘制了样本频率分布直方图,如图所示.
    (1)根据频率分布直方图,试求样本平均数的估计值;
    (2)若所有考生的初试成绩X近似服从正态分布,其中为样本平均数的估计值,,试估计初试成绩不低于88分的人数;
    (3)复试共三道题,第一题考生答对得5分,答错得0分,后两题考生每答对一道题得10分,答错得0分,答完三道题后的得分之和为考生的复试成绩.已知某考生进入复试,他在复试中第一题答对的概率为,后两题答对的概率均为,且每道题回答正确与否互不影响.记该考生的复试成绩为Y,求Y的分布列及均值.
    附:若随机变量X服从正态分布,则:,,.
    42.(湖北省武汉市2023届高三下学期二月调研)口袋中共有7个质地和大小均相同的小球,其中4个是黑球,现采用不放回抽取方式每次从口袋中随机抽取一个小球,直到将4个黑球全部取出时停止.
    (1)记总的抽取次数为X,求E(X);
    (2)现对方案进行调整:将这7个球分装在甲乙两个口袋中,甲袋装3个小球,其中2个是黑球;乙袋装4个小球,其中2个是黑球.采用不放回抽取方式先从甲袋每次随机抽取一个小球,当甲袋的2个黑球被全部取出后再用同样方式在乙袋中进行抽取,直到将乙袋的2个黑球也全部取出后停止.记这种方案的总抽取次数为Y,求E(Y)并从实际意义解释E(Y)与(1)中的E(X)的大小关系.
    43.(江苏省南京市、盐城市2023届高三下学期一模)人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为(先验概率).
    (1)求首次试验结束的概率;
    (2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.
    ①求选到的袋子为甲袋的概率,
    ②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案;方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.
    44.(江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一))某小区有居民2000人,想通过验血的方法筛查出乙肝病毒携带者,为此需对小区全体居民进行血液化验,假设携带病毒的居民占a%,若逐个化验需化验2000次.为减轻化验工作量,随机按n人一组进行分组,将各组n个人的血液混合在一起化验,若混合血样呈阴性,则这n个人的血样全部阴性;若混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需对每个人再分别单独化验一次.假设每位居民的化验结果呈阴性还是阳性相互独立.
    (1)若,,试估算该小区化验的总次数;
    (2)若,每人单独化验一次花费10元,n个人混合化验一次花费元.求n为何值时,每位居民化验费用的数学期望最小.
    45.(2023年湖北省八市高三(3月)联考)3月14日为国际数学日,也称为节,为庆祝该节日,某中学举办了数学文化节活动,其中一项活动是“数学知识竞赛”,初赛采用“两轮制”方式进行,要求每个班级派出两个小组,且每个小组都要参加两轮比赛,两轮比赛都通过的小组才具备参与决赛的资格.高三(7)班派出甲、乙两个小组参赛,在初赛中,若甲、乙两组通过第一轮比赛的概率分别是,通过第二轮比赛的概率分别是,且各个小组所有轮次比赛的结果互不影响.
    (1)若三(7)获得决赛资格的小组个数为X,求X的数学期望;
    (2)已知甲、乙两个小组在决赛中相遇.决赛以三道抢答题形式进行,抢到并答对一题得10分,答错一题扣10分,得分高的获胜:假设这两组在决赛中对每个问题回答正确的概率恰好是各自获得决赛资格的概率,且甲、乙两个小组抢到该题的可能性分别是,假设每道题抢与答的结果均互不影响,求乙已在第一道题中得10分的情况下甲获胜的概率.
    46.(山东省青岛市2023届高三下学期第一次适应性检测)今天,中国航天仍然迈着大步向浩瀚宇宙不断探索,取得了举世瞩目的非凡成就.某学校为了解学生对航天知识的知晓情况,在全校学生中开展了航天知识测试(满分100分),随机抽取了100名学生的测试成绩,按照,,,分组,得到如下所示的样本频率分布直方图:
    (1)根据频率分布直方图,估计该校学生测试成绩的中位数;
    (2)用样本的频率估计概率,从该校所有学生中随机抽取10名学生的成绩,用表示这10名学生中恰有k名学生的成绩在上的概率,求取最大值时对应的k的值;
    (3)从测试成绩在的同学中再次选拔进入复赛的选手,一共有6道题,从中随机挑选出4道题进行测试,至少答对3道题者才可以进入复赛.现有甲、乙两人参加选拔,在这6道题中甲能答对4道,乙能答对3道,且甲、乙两人各题是否答对相互独立.记甲、乙两人中进入复赛的人数为,求的分布列及期望.
    分类加法计数原理
    分步乘法计数原理
    相同点
    用来计算完成一件事的方法种类
    不同点
    分类完成,类类相加
    分步完成,步步相乘
    每类方案中的每一种方法都能独立完成这件事
    每步依次完成才算完成这件事(每步中的一种方法不能独立完成这件事)
    注意点
    类类独立,不重不漏
    步步相依,步骤完整
    直接法
    把符合条件的排列数直接列式计算
    优先法
    优先安排特殊元素或特殊位置
    捆绑法
    把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列
    插空法
    对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中
    定序问题除法处理
    对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列
    间接法
    正难则反,等价转化的方法
    甲校理科生
    甲校文科生
    乙校理科生
    乙校文科生
    达标率
    60%
    70%
    65%
    75%

    相关试卷

    2023届新高考卷概率与统计热门考题汇编(学生版):

    这是一份2023届新高考卷概率与统计热门考题汇编(学生版),共19页。

    2023 届新高考卷概率与统计热门考题汇编——排列组合与概率统计(学生及教师版):

    这是一份2023 届新高考卷概率与统计热门考题汇编——排列组合与概率统计(学生及教师版),文件包含2023届新高考卷概率与统计热门考题汇编排列组合与概率统计学生版pdf、2023届新高考卷概率与统计热门考题汇编排列组合与概率统计教师版详pdf等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。

    2023届高考数学概率与统计热门考题汇编含解析:

    这是一份2023届高考数学概率与统计热门考题汇编含解析,共32页。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map