2023届高考数学概率与统计热门考题汇编含解析
展开
这是一份2023届高考数学概率与统计热门考题汇编含解析,共32页。
新高考卷概率与统计热门考题汇编
(教师版)
1.(福建省福州市普通高中2023届高三毕业班质量检测(二检))若二项式展开式中存在常数项,则正整数n可以是( )
A.3 B.5 C.6 D.7
【详解】二项式展开式的通项为,
令,解得:,又因为且为整数,所以为的倍数,所以,
故选:.
2.(福建省福州市普通高中2023届高三毕业班质量检测(二检))为培养学生“爱读书、读好书、普读书”的良好习惯,某校创建了人文社科类、文学类、自然科学类三个读书社团.甲、乙两位同学各自参加其中一个社团,每位同学参加各个社团的可能性相同,则这两位同学恰好参加同一个社团的概率为( )
A. B. C. D.
【详解】记人文社科类、文学类、自然科学类三个读书社团分别为,则甲、乙两位同学各自参加其中一个社团的基本事件有共9种,而这两位同学恰好参加同一个社团包含的基本事件有共3种,
故这两位同学恰好参加同一个社团的概率.故选:A
3.(福建省厦门市2023届高三下学期第二次质量检测)的展开式中x2y3项的系数等于80,则实数a=( )
A.2 B.±2 C. D.±
【详解】展开式的通项公式是,当时,项的系数为,解得:.故选:D
4.(福建省厦门市2023届高三下学期第二次质量检测)厦门山海健康步道云海线全长约23公里,起于东渡邮轮广场,终于观音山沙滩,沿线申联贸鸟湖、狐尾山、仙岳山、园山、薛岭山、虎头山、金山、湖边水库、五缘湾、虎仔山、观音山等“八山三水”.市民甲计划从“八山三水”这11个景点中随机选取相邻的3个游览,则选取的景点中有“水”的概率为( )
A. B. C. D.
【详解】11个景点随机选取相邻的3个游览,共有9种情况,选取景点中有“水”的对立事件是在狐尾山、仙岳山、园山、薛岭山、虎头山、金山中选取3个相邻的,共有4种情况,则其概率,则11个景点中随机选取相邻的3个游览,则选取的景点中有“水”的概率.故选:C
5.(广东省2023届高考一模)如图,在两行三列的网格中放入标有数字的六张卡片,每格只放一张卡片,则“只有中间一列两个数字之和为5”的不同的排法有( )
A.96种 B.64种 C.32种 D.16种
【详解】根据题意,分3步进行,
第一步,要求“只有中间一列两个数字之和为5”,则中间的数字只能为两组数1,4或2,3中的一组,共有种排法;
第二步,排第一步中剩余的一组数,共有种排法;
第三步,排数字5和6,共有种排法;
由分步计数原理知,共有不同的排法种数为.故选:B.
6.(广东省佛山市2023届高三教学质量检测(一))已知事件,,的概率均不为,则的充要条件是( )
A. B.
C. D.
【详解】解:对于A:因为,由,
只能得到,并不能得到,故A错误;
对于B:因为,,
由,只能得到,
由于不能确定,,是否相互独立,故无法确定,故B错误;
对于C:因为,,
又,所以,故C正确;对于D:由于不能确定,,是否相互独立,若,,相互独立,则,,
则由可得,故由无法确定,故D错误;故选:C
7.(广东省广州市2023届高三综合测试(一))“回文”是古今中外都有的一种修辞手法,如“我为人人,人人为我”等,数学上具有这样特征的一类数称为“回文数”、“回文数”是指从左到右与从右到左读都一样的正整数,如121,241142等,在所有五位正整数中,有且仅有两位数字是奇数的“回文数”共有( )
A.100个 B.125个 C.225个 D.250个
【详解】依题意,五位正整数中的“回文数”具有:万位与个位数字相同,且不能为0;千位与十位数字相同,求有且仅有两位数字是奇数的“回文数”的个数有两类办法:
最多1个0,取奇数字有种,取能重复的偶数字有种,它们排入数位有种,取偶数字占百位有种,不同“回文数”的个数是个,
最少2个0,取奇数字有种,占万位和个位,两个0占位有1种,取偶数字占百位有种,
不同“回文数”的个数是个,由分类加法计算原理知,在所有五位正整数中,有且仅有两位数字是奇数的“回文数”共有个.故选:C
8.(广东省深圳市2023届高三第一次调研)安排5名大学生到三家企业实习,每名大学生只去一家企业,每家企业至少安排1名大学生,则大学生甲、乙到同一家企业实习的概率为( )
A. B. C. D.
【详解】5名大学生分三组,每组至少一人,有两种情形,分别为2,2,1人或3,1,1人;
当分为3,1,1人时,有种实习方案,当分为2,2,1人时,有种实习方案,即共有种实习方案,其中甲、乙到同一家企业实习的情况有种,故大学生甲、乙到同一家企业实习的概率为,
故选:D.
9.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)一组数据按照从小到大的顺序排列为1,2,3,5,6,8,记这组数据的上四分位数为n,则二项式展开式的常数项为( )
A. B.60 C.120 D.240
【详解】因为,所以,所以展开式的通项为:
,令得:,
所以展开式的常数项为,故选:B.
10.(江苏省八市(南通、泰州、扬州、徐州、淮安、连云港、宿迁、盐城)2023届高三二模)已知的展开式中各项系数和为243,则展开式中常数项为( )
A.60 B.80 C.100 D.120
【详解】当时,,解得,则的展开式第项,令,解得,所以,故选:B
11.(江苏省南京市、盐城市2023届高三下学期一模)某种品牌手机的电池使用寿命X(单位:年)服从正态分布,且使用寿命不少于2年的概率为0.9,则该品牌手机电池至少使用6年的概率为( )
A.0.9 B.0.7 C.0.3 D.0.1
【详解】由题得:,故,因为,所以根据对称性得:.故选:D.
12.(江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一))“绿水青山,就是金山银山”,随着我国的生态环境越来越好,外出旅游的人越来越多.现有两位游客慕名来江苏旅游,他们分别从“太湖鼋头渚、苏州拙政园、镇江金山寺、常州恐龙园、南京夫子庙、扬州瘦西湖”这6个景点中随机选择1个景点游玩.记事件A为“两位游客中至少有一人选择太湖鼋头渚”,事件B为“两位游客选择的景点不同”,则( )
A. B. C. D.
【详解】由题可得,,
所以.故选:D.
13.(2023年湖北省八市高三(3月)联考) 甲、乙、丙、丁、戊5名志愿者参加新冠疫情防控志愿者活动,现有三个小区可供选择,每个志愿者只能选其中一个小区.则每个小区至少有一名志愿者,且甲不在小区的概率为( )
A. B. C. D.
【详解】首先求所有可能情况,5个人去3个地方,共有种情况,再计算5个人去3个地方,且每个地方至少有一个人去,5人被分为或当5人被分为时,情况数为;当5人被分为时,情况数为;所以共有.由于所求甲不去,情况数较多,反向思考,求甲去的情况数,最后用总数减即可,当5人被分为时,且甲去,甲若为1,则,甲若为3,则,共计种,
当5人被分为时,且甲去,甲若为1,则,甲若为2,则,共计种,所以甲不在小区的概率为,故选:B.
15.(山东省济南市2023届高三下学期3月一模)从正六边形的6个顶点中任取3个构成三角形,则所得三角形是直角三角形的概率为( )
A. B. C. D.
【详解】以点为例,以点为其中一个顶点的三角形有,共10个,
其中直角三角形为,共6个,
故所得三角形是直角三角形的概率为.
故选:C
16.(山东省青岛市2023届高三下学期第一次适应性检测)某次考试共有4道单选题,某学生对其中3道题有思路,1道题完全没有思路.有思路的题目每道做对的概率为0.8,没有思路的题目,只好任意猜一个答案,猜对的概率为0.25.若从这4道题中任选2道,则这个学生2道题全做对的概率为( )
A.0.34 B.0.37 C.0.42 D.0.43
【详解】设事件表示“两道题全做对”,若两个题目都有思路,则,
若两个题目中一个有思路一个没有思路,则,故,故选:C
17.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)已知随机变量服从正态分布,且,则( )
A. B. C. D.
【详解】随机变量服从正态分布,显然对称轴,所以由对称性知,故选:C.
18.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)展开式中二项式系数最大的是,则不可能是( )
A.8 B.9 C.10 D.11
【详解】当时,是最大的二项式系数,符合要求,当时,是最大的二项式系数,符合要求,
当时,是最大的二项式系数,符合要求,当时,显然,不满足,
故选:A.
19.(浙江省温州市普通高中2023届高三下学期3月第二次适应性考试)一枚质地均匀的骰子,其六个面的点数分别为.现将此骰子任意抛掷2次,正面向上的点数分别为.设,设,记事件“”,“”,则( )
A. B. C. D.
【详解】将此骰子任意抛掷2次,则基本事件的方法总数为种,显然是取大函数,所以“”,则中有一个数字是5,另一个数字小于等于5,有种;
显然是取小函数,所以“”,“”同时发生,则有和;
所以,,所以.故选:B.
多选题
20.(福建省厦门市2023届高三下学期第二次质量检测)李明每天7:00从家里出发去学校,有时坐公交车,有时骑自行车.他各记录了50次坐公交车和骑自行车所花的时间,经数据分析得到:坐公交车平均用时30分钟,样本方差为36;自行车平均用时34分钟,样本方差为4.假设坐公交车用时X和骑自行车用时Y都服从正态分布,则( )
A.P(X>32)>P(Y>32)
B.P(X≤36)=P(Y≤36)
C.李明计划7:34前到校,应选择坐公交车
D.李明计划7:40前到校,应选择骑自行车
【详解】A.由条件可知,,根据对称性可知,故A错误;
B., ,所以,故B正确;
C. =,所以,故C正确;
D. ,,所以,故D正确.
故选:BCD
21.(广东省佛山市2023届高三教学质量检测(一))中国共产党第二十次全国代表大会的报告中,一组组数据折射出新时代十年的非凡成就,数字的背后是无数的付出,更是开启新征程的希望.二十大首场新闻发布会指出近十年我国居民生活水平进一步提高,其中2017年全国居民恩格尔系数为29.39%,这是历史上中国恩格尔系数首次跌破30%.恩格尔系数是由德国统计学家恩斯特·恩格尔提出的,计算公式是“恩格尔系数”.恩格尔系数是国际上通用的衡量居民生活水平高低的一项重要指标,一般随居民家庭收入和生活水平的提高而下降,恩格尔系数达60%以上为贫困,50%~60%为温饱,40%~50%为小康,30%~40%为富裕,低于30%为最富裕.如图是近十年我国农村与城镇居民的恩格尔系数折线图,由图可知( )
A.城镇居民2015年开始进入“最富裕”水平
B.农村居民恩格尔系数的平均数低于32%
C.城镇居民恩格尔系数的第45百分位数高于29%
D.全国居民恩格尔系数等于农村居民恩格尔系数和城镇居民恩格尔系数的平均数
【详解】对于A:从折线统计图可知年开始城镇居民的恩格尔系数均低于,即从2015年开始进入“最富裕”水平,故A正确;
对于B:农村居民恩格尔系数只有、、这三年在之间,
其余年份均大于,且、这两年大于(等于),
故农村居民恩格尔系数的平均数高于,故B错误;
对于C:城镇居民恩格尔系数从小到大排列(所对应的年份)前位分别为、、、、,
因为,所以第百分位数为第位,即年的恩格尔系数,由图可知年的恩格尔系数高于,故C正确;
对于D:由于无法确定农村居民与城镇居民的比例,显然农村居民占比要大于,
故不能用农村居民恩格尔系数和城镇居民恩格尔系数的平均数作为全国居民恩格尔系数,故D错误;故选:AC
22.(广东省广州市2023届高三综合测试(一))某校随机抽取了100名学生测量体重,经统计,这些学生的体重数据(单位:kg)全部介于45至70之间,将数据整理得到如图所示的频率分布直方图,则( )
A.频率分布直方图中a的值为0.07
B.这100名学生中体重低于60kg的人数为60
C.据此可以估计该校学生体重的第78百分位数约为62
D.据此可以估计该校学生体重的平均数约为62.5
【详解】对于A项,因为,解得:,故A项正确;
对于B项,人,故B项错误;
对于C项,因为,,,所以第78百分位数位于之间,
设第78百分位数为x,则,解得:,故C项正确;对于D项,因为,即:估计该校学生体重的平均数约为,故D项错误.故选:AC.
23.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)下列命题中正确的是( )
A.若样本数据,,,的样本方差为3,则数据,,,的方差为7
B.经验回归方程为时,变量x和y负相关
C.对于随机事件A与B,,,若,则事件A与B相互独立
D.若,则取最大值时
【详解】对于A,数据,,…,的方差为,所以A错误;
对于B,回归方程的直线斜率为负数,所以变量x与y呈负的线性相关关系,所以B正确;
对于C,由,得,所以事件A与事件B独立,所以C正确;
对于D,由,即,
解得或,所以D错误.故选:BC.
24.(湖北省武汉市2023届高三下学期二月调研)在一次全市视力达标测试后,该市甲乙两所学校统计本校理科和文科学生视力达标率结果得到下表:
甲校理科生
甲校文科生
乙校理科生
乙校文科生
达标率
60%
70%
65%
75%
定义总达标率为理科与文科学生达标人数之和与文理科学生总人数的比,则下列说法中正确的有( )
A.乙校的理科生达标率和文科生达标率都分别高于甲校
B.两校的文科生达标率都分别高于其理科生达标率
C.若甲校理科生和文科生达标人数相同,则甲校总达标率为65%
D.甲校的总达标率可能高于乙校的总达标率
【详解】由表中数据可得甲校理科生达标率为60%,文科生达标率为70%,
乙校理科生达标率为65%,文科生达标率为75%,故选项AB正确;
设甲校理科生有人,文科生有人,若,即,则甲校总达标率为,选项C错误;
由总达标率的计算公式可知当学校理科生文科生的人数相差较大时,所占的权重不同,总达标率会接近理科生达标率或文科生达标率,
当甲校文科生多于理科生,乙校文科生少于理科生时,甲校的总达标率可能高于乙校的总达标率,选项D正确;
故选:ABD
25.(湖北省武汉市2023届高三下学期二月调研)已知离散型随机变量服从二项分布,其中,记为奇数的概率为,为偶数的概率为,则下列说法中正确的有( )
A. B.时,
C.时,随着的增大而增大 D.时,随着的增大而减小
【详解】对于A选项,由概率的基本性质可知,,故A正确,
对于B选项,由时,离散型随机变量服从二项分布,
则,
所以,
,
所以,故B正确,
对于C,D选项,,
当时,为正项且单调递增的数列,
故随着的增大而增大故选项C正确,
当时,为正负交替的摆动数列,故选项D不正确.故选:ABC.
26.(2023年湖北省八市高三(3月)联考)连续抛掷一枚质地均匀的骰子两次,记录每次的点数,设事件 “第一次出现2点”,“第二次的点数小于5点”,“两次点数之和为奇数”,“两次点数之和为9”,则下列说法正确的有( )
A. 与不互斥且相互独立 B. 与互斥且不相互独立
C. 与互斥且不相互独立 D. 与不互斥且相互独立
【详解】对于A:连续抛掷一枚质地均匀的骰子两次,第一次与第二次的结果互不影响,即与相互独立;
第一次出现2点,第二次的点数小于5点可以同时发生,与不互斥;故A正确;
对于B:连续抛掷一枚质地均匀的骰子两次,第一次的结果会影响两次点数之和,即与不相互独立;
第一次出现2点,则两次点数之和最大为8,即与不能同时发生,即与互斥,故B正确;
对于C:连续抛掷一枚质地均匀的骰子两次,第二次的结果会影响两次点数之和,即与不相互独立;
若第一次的点数为5,第二次的点数4点,则两次点数之和为9,即与可以同时发生,即与不互斥,故C错误;
对于D:连续抛掷一枚质地均匀的骰子两次,第一次的结果不会影响两次点数之和的奇偶,即与相互独立;
若第一次的点数为2,第二次的点数3点,则两次点数之和为5是奇数,即与可以同时发生,即与不互斥,故D正确.故选:ABD.
27.(山东省青岛市2023届高三下学期第一次适应性检测)在的展开式中,下列说法正确的是( )
A.常数项是 B.第四项和第六项的系数相等
C.各项的二项式系数之和为 D.各项的系数之和为
【详解】根据二项式定理,的通项公式为,
对于A,常数项为,故A正确;
对于B,第四项的系数为,第六项的系数为,故B错误;
对于C,因为,所以各项的二项式系数之和为,故C正确;
对于D,令,各项的系数之和为,故D错误.故选:AC.
三.填空
28.(福建省福州市普通高中2023届高三毕业班质量检测(二检))利率变化是影响某金融产品价格的重要因素经分析师分析,最近利率下调的概率为60%,利率不变的概率为40%.根据经验,在利率下调的情况下该金融产品价格上涨的概率为80%,在利率不变的情况下该金融产品价格上涨的概率为40%.则该金融产品价格上涨的概率为__________.
【详解】有题意可知金融产品价格上涨的概率为:,
故答案为:
29.(广东省佛山市2023届高三教学质量检测(一))在的展开式中,常数项为___________.(用数字作答)
【详解】解:,令,解得,所以常数项为故答案为:15.
30.(广东省深圳市2023届高三第一次调研)的展开式中的系数为______(用数字做答).
【详解】解:的展开式的通项公式为,
令,则的展开式中的系数为,故答案为:-10
31.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)现有甲、乙两个口袋,其中甲口袋内装有三个1号球,两个2号球和一个3号球;乙口袋内装有两个1号球,一个2号球,一个3号球.第一次从甲口袋中任取1个球,将取出的球放入乙口袋中,第二次从乙口袋中任取一个球,则第二次取到2号球的概率为__________.
【详解】记事件,分别表示第一次、第二次取到i号球,,2,3,
依题意,,两两互斥,其和为,
并且,,,
所以,,,
应用全概率公式,有.故答案为:.
32.(江苏省南京市、盐城市2023届高三下学期一模)编号为1,2,3,4的四位同学,分别就座于编号为1,2,3,4的四个座位上,每位座位恰好坐一位同学,则恰有两位同学编号和座位编号一致的坐法种数为___________.
【详解】由题意4人中选2人出来,他们的两编号一致,剩下2人编号不一致,只有一种坐法,方法数为.故答案为:6.
33.(江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一))的展开式中的系数为________.
【详解】因为的展开式中的项为,
所以的展开式中的系数为,故答案为:.
34. (2023年湖北省八市高三(3月)联考)已知二项式的展开式中只有第4项的二项式系数最大,且展开式中项的系数为20,则实数的值为__________.
【详解】因为二项式的展开式中只有第4项的二项式系数最大,所以,二项式的通项为,令,解得, 所以展开式中项为,,解得.故答案为:.
35.展开式中的常数项为__________.
【详解】二项式的展开式的通项公式,令,可得,所以展开式中的常数项为,故答案为24.
解答
36.(福建省福州市普通高中2023届高三毕业班质量检测(二检))脂肪含量(单位:%)指的是脂肪重量占人体总重量的比例.某运动生理学家在对某项健身活动参与人群的脂肪含量调查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男性120位,其平均数和方差分别为14和6,抽取了女性90位,其平均数和方差分别为21和17.
(1)试由这些数据计算出总样本的均值与方差,并对该项健身活动的全体参与者的脂肪含量的均值与方差作出估计.(结果保留整数)
(2)假设全体参与者的脂肪含量为随机变量X,且X~N(17,2),其中2近似为(1)中计算的总样本方差.现从全体参与者中随机抽取3位,求3位参与者的脂肪含量均小于12.2%的概率.
附:若随机变量×服从正态分布N(μ,2),则P(μ-≤X≤μ+≈0.6827,P(μ-2≤X≤μ+2)≈0.9545,≈4.7,≈4.8,0.158653≈0.004.
【详解】(1)把男性样本记为,其平均数记为,方差记为;
把女性样本记为,其平均数记为,方差记为.则.
记总样本数据的平均数为,方差为.
由,根据按比例分配的分层随机抽样总样本平均数与各层样本平均数的关系,
可得总样本平均数为
根据方差的定义,总样本方差为
由可得
同理,,
因此,
所以,
所以总样本的均值为17,方差为23,
并据此估计该项健身活动全体参与者的脂肪含量的总体均值为17,方差为23.
(2)由(1)知,所以,又因为,
所以,
因为,所以.所以3位参与者的脂肪含量均小于的概率为.
38.(福建省厦门市2023届高三下学期第二次质量检测)移动物联网广泛应用于生产制造、公共服务、个人消费等领域.截至2022年底,我国移动物联网连接数达18.45亿户,成为全球主要经济体中首个实现“物超人”的国家.右图是2018-2022年移动物联网连接数W与年份代码t的散点图,其中年份2018-2022对应的t分别为1~5.
(1)根据散点图推断两个变量是否线性相关.计算样本相关系数(精确到0.01),并推断它们的相关程度;
(2)(i)假设变量x与变量Y的n对观测数据为(x1,y1),(x2,y2),…,(xn,yn),两个变量满足一元线性回归模型 (随机误差).请推导:当随机误差平方和Q=取得最小值时,参数b的最小二乘估计.
(ii)令变量,则变量x与变量Y满足一元线性回归模型利用(i)中结论求y关于x的经验回归方程,并预测2024年移动物联网连接数.
附:样本相关系数,,,,
【详解】(1)由散点图可以看出样本点都集中在一条直线附近,由此推断两个变量线性相关.
因为,所以 ,
所以 ,
所以这两个变量正线性相关,且相关程度很强.
(2)(i) ,
要使取得最小值,当且仅当.
(ii) 由(i)知 ,
所以y关于x的经验回归方程,又,
所以当 时,则,
所以预测2024年移动物联网连接数23.04亿户.
39.(广东省2023届高考一模)某商场为了回馈广大顾客,设计了一个抽奖活动,在抽奖箱中放10个大小相同的小球,其中5个为红色,5个为白色.抽奖方式为:每名顾客进行两次抽奖,每次抽奖从抽奖箱中一次性摸出两个小球.如果每次抽奖摸出的两个小球颜色相同即为中奖,两个小球颜色不同即为不中奖.
(1)若规定第一次抽奖后将球放回抽奖箱,再进行第二次抽奖,求中奖次数的分布列和数学期望.
(2)若规定第一次抽奖后不将球放回抽奖箱,直接进行第二次抽奖,求中奖次数的分布列和数学期望.
(3)如果你是商场老板,如何在上述问两种抽奖方式中进行选择?请写出你的选择及简要理由.
【详解】(1)若第一次抽奖后将球放回抽奖箱,再进行第二次抽奖,则每次中奖的概率为,因为两次抽奖相互独立,所以中奖次数服从二项分布,即,
所以的所有可能取值为,则
,
所以的分布列为
0
1
2
所以的数学期望为.
(2)若第一次抽奖后不将球放回抽奖箱,直接进行第二次抽奖,中奖次数的所有可能取值为,则,
,
,
所以的分布列为
0
1
2
所以的数学期望为.
(3)因为(1)(2)两问的数学期望相等,第(1)问中两次奖的概率比第(2)问的大,
即,第(1)不中奖的概率比第问小,即,
回答一:若商场老板希望中两次奖的顾客多,产生宣传效应,则选择按第(2)问方式进行抽.
回答二:若商场老板希望中奖的顾客多,则选择按第(1)问方式进行抽奖.
40.(广东省佛山市2023届高三教学质量检测(一))近几年,随着生活水平的提高,人们对水果的需求量也随之增加,我市精品水果店大街小巷遍地开花,其中中华猕猴桃的口感甜酸、可口,风味较好,广受消费者的喜爱.在某水果店,某种猕猴桃整盒出售,每盒20个.已知各盒含0,1个烂果的概率分别为0.8,0.2.
(1)顾客甲任取一盒,随机检查其中4个猕猴桃,若当中没有烂果,则买下这盒猕猴桃,否则不会购买此种猕猴桃.求甲购买一盒猕猴桃的概率;
(2)顾客乙第1周网购了一盒这种猕猴桃,若当中没有烂果,则下一周继续网购一盒;若当中有烂果,则隔一周再网购一盒;以此类推,求乙第5周网购一盒猕猴桃的概率
【详解】(1)由题意可得:甲不购买一盒猕猴桃情况为该盒有1个烂果且随机检查其中4个时抽到这个烂果,
甲购买一盒猕猴桃的概率.
(2)用“√”表示购买,“╳”表示不购买,乙第5周购买有如下可能:
第1周
第2周
第3周
第4周
第5周
√
√
√
√
√
√
╳
√
√
√
√
√
╳
√
√
√
╳
√
╳
√
√
√
√
╳
√
故乙第5周网购一盒猕猴桃的概率.
41.(广东省广州市2023届高三综合测试(一))为了拓展学生的知识面,提高学生对航空航天科技的兴趣,培养学生良好的科学素养,某校组织学生参加航空航天科普知识答题竞赛,每位参赛学生答题若干次,答题赋分方法如下:第1次答题,答对得20分,答错得10分:从第2次答题开始,答对则获得上一次答题得分的两倍,答错得10分.学生甲参加答题竞赛,每次答对的概率为,各次答题结果互不影响.
(1)求甲前3次答题得分之和为40分的概率;
(2)记甲第i次答题所得分数的数学期望为.
①写出与满足的等量关系式(直接写出结果,不必证明):
②若,求i的最小值.
【详解】(1)甲前3次答题得分之和为40分的事件是:甲前3次答题中仅只答对一次的事件,
所以甲前3次答题得分之和为40分的概率.
(2)①甲第1次答题得20分、10分的概率分别为,则,
甲第2次答题得40分、20分、10分的概率分别为,
则,显然,
,甲第次答题所得分数的数学期望为,
因此第次答对题所得分数为,答错题所得分数为10分,其概率分别为,
于是甲第i次答题所得分数的数学期望为,
所以与满足的等量关系式是:,,且;
②由①知,,当时,,而,
因此数列以为首项,为公比的等比数列,,
于是,由得:,显然数列是递增数列,
而,则有正整数,
所以i的最小值是5.
42.(广东省深圳市2023届高三第一次调研)某企业因技术升级,决定从2023年起实现新的绩效方案.方案起草后,为了解员工对新绩效方案是否满意,决定采取如下“随机化回答技术”进行问卷调查:
一个袋子中装有三个大小相同的小球,其中1个黑球,2个白球.企业所有员工从袋子中有放回的随机摸两次球,每次摸出一球.约定“若两次摸到的球的颜色不同,则按方式Ⅰ回答问卷,否则按方式Ⅱ回答问卷”.
方式Ⅰ:若第一次摸到的是白球,则在问卷中画“○”,否则画“×”;
方式Ⅱ:若你对新绩效方案满意,则在问卷中画“○”,否则画“×”.
当所有员工完成问卷调查后,统计画○,画×的比例.用频率估计概率,由所学概率知识即可求得该企业员工对新绩效方案的满意度的估计值.其中满意度.
(1)若该企业某部门有9名员工,用X表示其中按方式Ⅰ回答问卷的人数,求X的数学期望;
(2)若该企业的所有调查问卷中,画“○”与画“×”的比例为4:5,试估计该企业员工对新绩效方案的满意度.
【详解】(1)每次摸到白球的概率,摸到黑球的概率为,
每名员工两次摸到的球的颜色不同的概率,
由题意可得:该部门9名员工中按方式Ⅰ回答问卷的人数,
所以X的数学期望.
(2)记事件A为“按方式Ⅰ回答问卷”,事件B为“按方式Ⅱ回答问卷”,事件C为“在问卷中画○”.
由(1)知,,.
∵,
由全概率公式,则,解得,故根据调查问卷估计,该企业员工对新绩效方案的满意度为40%.
43.(湖北省七市(州)2023届高三下学期3月联合统一调研测试)某市举行招聘考试,共有4000人参加,分为初试和复试,初试通过后参加复试.为了解考生的考试情况,随机抽取了100名考生的初试成绩,并以此为样本绘制了样本频率分布直方图,如图所示.
(1)根据频率分布直方图,试求样本平均数的估计值;
(2)若所有考生的初试成绩X近似服从正态分布,其中为样本平均数的估计值,,试估计初试成绩不低于88分的人数;
(3)复试共三道题,第一题考生答对得5分,答错得0分,后两题考生每答对一道题得10分,答错得0分,答完三道题后的得分之和为考生的复试成绩.已知某考生进入复试,他在复试中第一题答对的概率为,后两题答对的概率均为,且每道题回答正确与否互不影响.记该考生的复试成绩为Y,求Y的分布列及均值.
附:若随机变量X服从正态分布,则:,,.
【详解】(1)样本平均数的估计值为.
(2)因为学生初试成绩X服从正态分布,其中,,
则,所以,
所以估计初试成绩不低于88分的人数为人.
(3)Y的取值分别为0,5,10,15,20,25,则,
,,
,,
, 故Y的分布列为:
Y
0
5
10
15
20
25
P
所以数学期望为.
44.(湖北省武汉市2023届高三下学期二月调研)口袋中共有7个质地和大小均相同的小球,其中4个是黑球,现采用不放回抽取方式每次从口袋中随机抽取一个小球,直到将4个黑球全部取出时停止.
(1)记总的抽取次数为X,求E(X);
(2)现对方案进行调整:将这7个球分装在甲乙两个口袋中,甲袋装3个小球,其中2个是黑球;乙袋装4个小球,其中2个是黑球.采用不放回抽取方式先从甲袋每次随机抽取一个小球,当甲袋的2个黑球被全部取出后再用同样方式在乙袋中进行抽取,直到将乙袋的2个黑球也全部取出后停止.记这种方案的总抽取次数为Y,求E(Y)并从实际意义解释E(Y)与(1)中的E(X)的大小关系.
【详解】(1)X可能取值为4,5,6,7,
,
;
(2)Y可能取值为4,5,6,7,设甲袋和乙袋抽取次数分别为和 ,
,
,
,
,
.
在将球分装时,甲袋中的黑球取完后直接取乙袋,若此时甲袋中还有其它球,则该球的干扰作用已经消失,所以同样是要取出4个黑球,调整后的方案总抽取次数的期望更低.
45.(江苏省南京市、盐城市2023届高三下学期一模)人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为(先验概率).
(1)求首次试验结束的概率;
(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.
①求选到的袋子为甲袋的概率,
②将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案;方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.
【详解】(1)设试验一次,“取到甲袋”为事件,“取到乙袋”为事件,“试验结果为红球”为事件,“试验结果为白球”为事件,
(1).
所以试验一次结果为红球的概率为.
(2)①因为,是对立事件,,
所以,
所以选到的袋子为甲袋的概率为.
②由①得,
所以方案一中取到红球的概率为:
,
方案二中取到红球的概率为:
,
因为,所以方案二中取到红球的概率更大.
46.(江苏省苏锡常镇四市2023届高三下学期3月教学情况调研(一))某小区有居民2000人,想通过验血的方法筛查出乙肝病毒携带者,为此需对小区全体居民进行血液化验,假设携带病毒的居民占a%,若逐个化验需化验2000次.为减轻化验工作量,随机按n人一组进行分组,将各组n个人的血液混合在一起化验,若混合血样呈阴性,则这n个人的血样全部阴性;若混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需对每个人再分别单独化验一次.假设每位居民的化验结果呈阴性还是阳性相互独立.
(1)若,,试估算该小区化验的总次数;
(2)若,每人单独化验一次花费10元,n个人混合化验一次花费元.求n为何值时,每位居民化验费用的数学期望最小.
(注:当时,)
【详解】(1)设每位居民需化验的次数为X,
若混合血样为阴性,则,若混合血样呈阳性,则,
所以,,
,
所以2000名居民总化验次数约为次;
(2)设每组n人总费用为Y元,若混合血样呈阴性则,若混合血样为阳性,则,所以,,
所以,
每位居民的化验费用为:
元,
当且仅当,即时取等号,
故时,每位居民化验费用的期望最小.
47. (2023年湖北省八市高三(3月)联考)3月14日为国际数学日,也称为节,为庆祝该节日,某中学举办了数学文化节活动,其中一项活动是“数学知识竞赛”,初赛采用“两轮制”方式进行,要求每个班级派出两个小组,且每个小组都要参加两轮比赛,两轮比赛都通过的小组才具备参与决赛的资格.高三(7)班派出甲、乙两个小组参赛,在初赛中,若甲、乙两组通过第一轮比赛的概率分别是,通过第二轮比赛的概率分别是,且各个小组所有轮次比赛的结果互不影响.
(1)若三(7)获得决赛资格的小组个数为X,求X的数学期望;
(2)已知甲、乙两个小组在决赛中相遇.决赛以三道抢答题形式进行,抢到并答对一题得10分,答错一题扣10分,得分高的获胜:假设这两组在决赛中对每个问题回答正确的概率恰好是各自获得决赛资格的概率,且甲、乙两个小组抢到该题的可能性分别是,假设每道题抢与答的结果均互不影响,求乙已在第一道题中得10分的情况下甲获胜的概率.
【详解】
(1)设甲乙通过两轮制的初赛分别为事件,则
,
由题意可得,的取值有,
.
所以
(2)依题意甲,乙抢到并答对一题的概率为,
乙已得10分,甲若想获胜情况有:
①甲得20分:其概率为
②甲得10分,乙再得-10分,其概率为;
③甲得0分,乙再得-20分,其概率为.
故乙先得10分后甲获胜的概率为.
48.(山东省青岛市2023届高三下学期第一次适应性检测)今天,中国航天仍然迈着大步向浩瀚宇宙不断探索,取得了举世瞩目的非凡成就.某学校为了解学生对航天知识的知晓情况,在全校学生中开展了航天知识测试(满分100分),随机抽取了100名学生的测试成绩,按照,,,分组,得到如下所示的样本频率分布直方图:
(1)根据频率分布直方图,估计该校学生测试成绩的中位数;
(2)用样本的频率估计概率,从该校所有学生中随机抽取10名学生的成绩,用表示这10名学生中恰有k名学生的成绩在上的概率,求取最大值时对应的k的值;
(3)从测试成绩在的同学中再次选拔进入复赛的选手,一共有6道题,从中随机挑选出4道题进行测试,至少答对3道题者才可以进入复赛.现有甲、乙两人参加选拔,在这6道题中甲能答对4道,乙能答对3道,且甲、乙两人各题是否答对相互独立.记甲、乙两人中进入复赛的人数为,求的分布列及期望.
【详解】(1)因为前两个矩形的面积之和为,前三个矩形面积为,
所以中位数在之间,设中位数为,
则,解得,故中位数为.
(2)由题意可得,成绩在上的概率为,则不在的概率为,
所以,即有,,
当取最大值时,则,
即,
解得,即,
且,所以.
(3)由题意可知,从6道题中选4题共有,
因为甲能答对6道题中的4道题,故甲能进复赛的情况共有,
所以甲能进复赛的概率为,则甲不能进复赛的概率为;
因为乙能答对6道题中的3道题,故乙能进复赛的情况共有,
所以乙能进复赛的概率为,则乙不能进复赛的概率为;
依题可得,的可能取值为,
所以,,,
则分布列为:
则.
相关试卷
这是一份2023届新高考卷概率与统计热门考题汇编(学生版),共19页。
这是一份2023 届新高考卷概率与统计热门考题汇编——排列组合与概率统计(学生及教师版),文件包含2023届新高考卷概率与统计热门考题汇编排列组合与概率统计学生版pdf、2023届新高考卷概率与统计热门考题汇编排列组合与概率统计教师版详pdf等2份试卷配套教学资源,其中试卷共48页, 欢迎下载使用。
这是一份近五年2017_2021高考数学真题分类汇编10概率与统计含解析,共84页。试卷主要包含了单选题,多选题,解答题,填空题,概率与统计等内容,欢迎下载使用。