所属成套资源:中考数学模拟汇总卷(多个省市试卷含答案解析)
中考强化训练贵州省兴仁市中考数学高频模拟汇总 卷(Ⅱ)(含答案及详解)
展开这是一份中考强化训练贵州省兴仁市中考数学高频模拟汇总 卷(Ⅱ)(含答案及详解),共30页。
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、利用如图①所示的长为a、宽为b的长方形卡片4张,拼成了如图②所示的图形,则根据图②的面积关系能验证的等式为( )
A.B.
C.D.
2、如图,点A,B,C在⊙O上,∠ACB=35°,则∠AOB的度数是( )
A.75°B.70°C.65°D.55°
3、如图,O是直线AB上一点,则图中互为补角的角共有( )
A.1对B.2对C.3对D.4对
4、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
A.B.C.D.
5、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
A.2 个B.3 个C.4 个D.5 个.
6、如图,在平面直角坐标系中,可以看作是经过若干次图形的变化(平移、轴对称)得到的,下列由得到的变化过程错误的是( )
A.将沿轴翻折得到
B.将沿直线翻折,再向下平移个单位得到
C.将向下平移个单位,再沿直线翻折得到
D.将向下平移个单位,再沿直线翻折得到
7、下列图形中,能用,,三种方法表示同一个角的是( )
A.B.
C.D.
8、有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是( )
A.|a|>|b|B.a+b<0C.a﹣b<0D.ab>0
9、有理数,在数轴上对应点如图所示,则下面式子中正确的是( )
A.B.C.D.
10、下列不等式中,是一元一次不等式的是( )
A.B.C.D.
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、如图,均是由若干个的基础图形组成的有规律的图案,第①个图案由4个基础图形组成,第②个图案由7个基础图形组成,…,按此规律排列下去,第④个图案中的基础图形个数为______,用式子表示第n个图案中的基础图形个数为______.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
2、若关于的不等式的解集为,则的取值范围为__.
3、如图,AC为正方形ABCD的对角线,E为AC上一点,连接EB,ED,当时,的度数为______.
4、班主任从甲、乙、丙、丁四位同学中选择一位同学参加学校的演讲比赛.甲同学被选中的概率是______.
5、如图,5个大小形状完全相同的长方形纸片,在直角坐标系中摆成如图图案,己知点,则点A的坐标是__________.
三、解答题(5小题,每小题10分,共计50分)
1、已知一次函数y=-3x+3的图象分别与x轴,y轴交于A,B两点,点C(3,0).
(1)如图1,点D与点C关于y轴对称,点E在线段BC上且到两坐标轴的距离相等,连接DE,交y轴于点F.求点E的坐标;
(2)△AOB与△FOD是否全等,请说明理由;
(3)如图2,点G与点B关于x轴对称,点P在直线GC上,若△ABP是等腰三角形,直接写出点P的坐标.
2、如图,等腰直角△ABC中,∠BAC=90°,在BC上取一点D,使得CD=AB,作∠ABC的角平分线交AD于E,请先按要求继续完成图形:以A为直角顶点,在AE右侧以AE为腰作等腰直角△AEF,其中∠EAF=90°.再解决以下问题:
(1)求证:B,E,F三点共线;
(2)连接CE,请问△ACE的面积和△ABF的面积有怎样的数量关系,并说明理由.
3、已知:如图,锐角∠AOB.
求作:射线OP,使OP平分∠AOB.
作法:
①在射线OB上任取一点M;
②以点M为圆心,MO的长为半径画圆,分别交射线OA,OB于C,D两点;
③分别以点C,D为圆心,大于的长为半径画弧,在∠AOB内部两弧交于点H;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
④作射线MH,交⊙M于点P;
⑤作射线OP.
射线OP即为所求.
(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);
(2)完成下面的证明.
证明:连接CD.
由作法可知MH垂直平分弦CD.
∴( )(填推理依据).
∴∠COP = .
即射线OP平分∠AOB.
4、如图,在等腰中,,点是边上的中点,过点作,交的延长线于点,过点作,交于点,交于点,交于点.
求证:
(1);
(2).
5、如图,在平面直角坐标系中,抛物线与轴交于两点与轴交于点C,点M是抛物线的顶点,抛物线的对称轴与BC交于点D,与轴交于点E.
(1)求抛物线的对称轴及B点的坐标
(2)如果,求抛物线的表达式;
(3)在(2)的条件下,已知点F是该抛物线对称轴上一点,且在线段的下方,,求点的坐标
-参考答案-
一、单选题
1、A
【分析】
整个图形为一个正方形,找到边长,表示出面积;也可用1个小正方形的面积加上4个矩形的面积表示,然后让这两个面积相等即可.
【详解】
∵大正方形边长为:,面积为:;
1个小正方形的面积加上4个矩形的面积和为:;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴.
故选:A.
【点睛】
此题考查了完全平方公式的几何意义,用不同的方法表示相应的面积是解题的关键.
2、B
【分析】
直接根据圆周角定理求解.
【详解】
解:,
.
故选:B.
【点睛】
本题考查了圆周角定理,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
3、B
【分析】
根据补角定义解答.
【详解】
解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BOD,共2对,
故选:B.
【点睛】
此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.
4、B
【分析】
如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
【详解】
解:如图:连接OB,
∵是的切线,B为切点
∴∠OBA=90°
∵
∴∠COB=90°-42°=48°
∴=∠COB=24°.
故选B.
【点睛】
本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
5、C
【分析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;
(2)∵a<0,b>0,c>0,∴abc<0,故命题正确;
(3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;
(4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;
(5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
故选C.
【点睛】
本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
6、C
【分析】
根据坐标系中平移、轴对称的作法,依次判断四个选项即可得.
【详解】
解:A、根据图象可得:将沿x轴翻折得到,作图正确;
B、作图过程如图所示,作图正确;
C、如下图所示为作图过程,作图错误;
D、如图所示为作图过程,作图正确;
故选:C.
【点睛】
题目主要考查坐标系中图形的平移和轴对称,熟练掌握平移和轴对称的作法是解题关键.
7、A
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【分析】
根据角的表示的性质,对各个选项逐个分析,即可得到答案.
【详解】
A选项中,可用,,三种方法表示同一个角;
B选项中,能用表示,不能用表示;
C选项中,点A、O、B在一条直线上,
∴能用表示,不能用表示;
D选项中,能用表示,不能用表示;
故选:A.
【点睛】
本题考查了角的知识;解题的关键是熟练掌握角的表示的性质,从而完成求解.
8、C
【分析】
先根据数轴上点的位置,判断数a、b的正负和它们绝对值的大小,再根据加减法、乘法法则确定正确选项.
【详解】
解:由数轴知:﹣1<a<0<1<b,|a|<|b|,
∴选项A不正确;
a+b>0,选项B不正确;
∵a<0,b>0,
∴ab<0,选项D不正确;
∵a<b,
∴a﹣b<0,选项C正确,
故选:C.
【点睛】
本题考查了数轴上点的位置、有理数的加减法、乘法法则.理解加减法法则和乘法的符号法则是解决本题的关键.
9、C
【分析】
先根据数轴可得,再根据有理数的加减法与乘法法则逐项判断即可得.
【详解】
解:由数轴得:.
A、,此项错误;
B、由得:,所以,此项错误;
C、,此项正确;
D、,此项错误;
故选:C.
【点睛】
本题考查了数轴、绝对值、有理数的加减法与乘法,熟练掌握数轴的性质是解题关键.
10、B
【分析】
根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.
【详解】
A、不等式中含有两个未知数,不符合题意;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
B、符合一元一次不等式的定义,故符合题意;
C、没有未知数,不符合题意;
D、未知数的最高次数是2,不是1,故不符合题意.
故选:B
【点睛】
本题考查一元一次不等式的定义,掌握其定义是解决此题关键.
二、填空题
1、 13
【解析】
【分析】
根据前三个图形中基础图形的个数得出第n个图案中基础图形的个数为3n+1即可.
【详解】
解:观察图形,可知
第①个图案由4个基础图形组成,即4=1×3+1,
第②个图案由7个基础图形组成,即7=2×3+1,
第③个图案由10个基础图形组成,即10=3×3+1,
…
第④个图案中的基础图形个数为13=3×4+1,
第n个图案的基础图形的个数为:3n+1.
故答案为:13,3n+1.
【点睛】
本题考查了图形的变化类、列代数式,解决本题的关键是观察图形的变化寻找规律.
2、
【解析】
【分析】
根据不等式的性质3,不等式的两边同乘或除以同一个负数,不等号的方向改变,可得答案.
【详解】
解:不等式的解集为,
,
.
故答案为:.
【点睛】
本题考查了一元一次不等式的性质,解一元一次不等式,掌握不等式性质,不等式的两边同时乘以或除以一个负数,不等号的方向发生改变是解题关键.
3、18°##18度
【解析】
【分析】
由“SAS”可证△DCE≌△BCE,可得∠CED=∠CEB=∠BED=63°,由三角形的外角的性质可求解.
【详解】
证明:∵四边形ABCD是正方形,
∴AD=CD=BC=AB,∠DAE=∠BAE=∠DCA=∠BCA=45°,
在△DCE和△BCE中,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴△DCE≌△BCE(SAS),
∴∠CED=∠CEB=∠BED=63°,
∵∠CED=∠CAD+∠ADE,
∴∠ADE=63°-45°=18°,
故答案为:18°.
【点睛】
本题考查了正方形的性质,全等三角形的判定和性质,证明△DCE≌△BCE是本题的关键.
4、##0.25
【解析】
【分析】
由题意得出从4位同学中选取1位共有4种等可能结果,其中选中甲同学的只有1种结果,根据概率公式可得.
【详解】
解:从4位同学中选取1位共有4种等可能结果,
其中选中甲同学的只有1种结果,
∴恰好选中乙同学的概率为,
故答案为:.
【点睛】
本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
5、(-3,9)
【解析】
【分析】
设长方形纸片的长为x,宽为y,根据点B的坐标,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再结合点A的位置,即可得出点A的坐标.
【详解】
解:设长方形纸片的长为x,宽为y,
依题意,得:,
解得:,
∴x-y=3,x+2y=9,
∴点A的坐标为(-3,6).
故答案为:(-3,9).
【点睛】
本题考查了二元一次方程组的应用以及坐标与图形性质,找准等量关系,正确列出二元一次方程组是解题的关键.
三、解答题
1、
(1)E(,)
(2)△AOB≌△FOD,理由见详解;
(3)P(0,-3)或(4,1)或(,).
【分析】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(1)连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,首先求出点A,点B,点C,点D的坐标,然后根据点E到两坐标轴的距离相等,得到OE平分∠BOC,进而求出点E的坐标即可;
(2)首先求出直线DE的解析式,得到点F的坐标,即可证明△AOB≌△FOD;
(3)首先求出直线GC的解析式,求出AB的长,设P(m,m-3),分类讨论①当AB=AP时,②当AB=BP时,③当AP=BP时,分别求出m的值即可解答.
(1)
解: 连接OE,过点E作EG⊥OC于点G,EH⊥OB于点H,
当y=0时,-3x+3=0,
解得x=1,
∴A(1,0),
当x=0时,y=3,
∴OB=3,B(0,3),
∵点D与点C关于y轴对称,C(3,0),OC=3,
∴D(-3,0),
∵点E到两坐标轴的距离相等,
∴EG=EH,
∵EH⊥OC,EG⊥OC,
∴OE平分∠BOC,
∵OB=OC=3,
∴CE=BE,
∴E为BC的中点,
∴E(,);
(2)
解: △AOB≌△FOD,
设直线DE表达式为y=kx+b,
则,
解得:,
∴y=x+1,
∵F是直线DE与y轴的交点,
∴F(0,1),
∴OF=OA=1,
∵OB=OD=3,∠AOB=∠FOD=90°,
∴△AOB≌△FOD;
(3)
解:∵点G与点B关于x轴对称,B(0,3),
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴点G(0,-3),
∵C(3,0),
设直线GC的解析式为:y=ax+c,
,
解得:,
∴y=x-3,
AB== ,
设P(m,m-3),
①当AB=AP时,
=
整理得:m2-4m=0,
解得:m1=0,m2=4,
∴P(0,-3)或(4,1),
②当AB=BP时,=
m2-6m+13=0,
△<0
故不存在,
③当AP=BP时,
=,
解得:m=,
∴P(, ),
综上所述P(0,-3)或(4,1)或(,),
【点睛】
此题主要考查待定系数法求一次函数,一次函数与坐标轴的交点,全等三角形的判定,勾股定理.
2、
(1)见解析
(2)△ACE的面积和△ABF的面积相等.理由见解析
【分析】
(1)利用等腰直角三角形的性质得到∠CAD=∠CDA=67.5°,利用角平分线的性质得到∠ABE=∠DBE=22.5°,∠BEA=135°,即可推出∠BEA+∠AEF=180°;
(2)证明Rt△AEG≌Rt△AFH,利用全等三角形的性质得到EG= FH,则△ACE和△ABF等底等高,即可证明结论.
(1)
证明:∵等腰直角△ABC中,∠BAC=90°,
∴∠ABC=∠C=45°,AB=AC,
∵CD=AB,则CD=AC,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠CAD=∠CDA==67.5°,
∴∠BAE=90°-∠CAD=22.5°,
∵AD平分∠ABC,
∴∠ABE=∠DBE=22.5°,
∴∠BEA=180°-∠ABE-∠BAE=135°,
∵△AEF是等腰直角三角形,且∠EAF=90°,
∴∠AEF=∠F=45°,
∴∠BEA+∠AEF=180°,
∴B,E,F三点共线;
(2)
解:△ACE的面积和△ABF的面积相等.理由如下:
过点E作EG⊥AC于点G,过点F作FH⊥BA交BA延长线于点H,
∵∠HAF=180°-∠BAE-∠EAF=180°-22.5°-90°=67.5°,∠CAE=67.5°,
∴∠HAF=∠CAE,
∵△AEF是等腰直角三角形,
∴AE=AF,
∴Rt△AEG≌Rt△AFH,
∴EG= FH,
∵AB=AC,
∴△ACE和△ABF等底等高,
∴△ACE的面积和△ABF的面积相等.
【点睛】
本题考查了等腰直角三角形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键.
3、
(1)见解析
(2)垂径定理及推论;∠DOP
【分析】
(1)根据题干在作图方法依次完成作图即可;
(2)由垂径定理先证明 再利用圆周角定理证明即可.
(1)
解:如图, 射线OP即为所求.
(2)
证明:连接CD.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
由作法可知MH垂直平分弦CD.
∴( 垂径定理 )(填推理依据).
∴∠COP =.
即射线OP平分∠AOB.
【点睛】
本题考查的是平分线的作图,垂径定理的应用,圆周角定理的应用,熟练的运用垂径定理证明是解本题的关键.
4、
(1)见解析
(2)见解析
【分析】
(1)利用已知条件证明即可;
(2)通过证明得出,再根据,得出结论.
(1)
证明:,,
,
,
,
,
,
;
(2)
证明,点是边上的中点,
,,
,
,
,
,
,
,
,
,
,
,
即.
【点睛】
本题考查了三角形相似的判定和性质以及直角三角形和等腰三角形的性质,解题的关键是掌握相似三角形的判定定理进行证明.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
5、
(1)对称轴是,B(4,0)
(2)y=
(3)F( ,-5)
【分析】
(1)根据二次函数抛物线的性质,可求出对称轴,即可得B点的坐标;
(2)二次函数的y轴平行于对称轴,根据平行线分线段成比例用含a的代数式表示DE的长,MD= ,可表示M的纵坐标,然后把M的横坐标代入y=ax2−3ax−4a,可得到关于a的方程,求出a的值,即可得答案;
(3)先证△AOC∽△COB,得∠BCO=∠CAO,再求出∠CAO=∠CFB,得△AGC∽△FGB,根据相似三角形对于高的比等于相似比,可得答案.
(1)
解:∵二次函数y=ax2−3ax−4a,
∴对称轴是 ,
∵A(−1,0),
∵1+1.5=2.5,
∴1.5+2.5=4,
∴B(4,0);
(2)
∵二次函数y=ax2−3ax−4a,C在y轴上,
∴C的横坐标是0,纵坐标是−4a,
∵y轴平行于对称轴,
∴ ,
∴,
∵ ,
∵MD=,
∵M的纵坐标是+
∵M的横坐标是对称轴x,
∴ ,
∴+=,
解这个方程组得: ,
∴y=ax2−3ax−4a= x2-3×()x-4×()=;
(3)
假设F点在如图所示的位置上,连接AC、CF、BF,CF与AB相交于点G,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
由(2)可知:AO=1,CO=2,BO=4,
∴ ,
∴,
∵∠AOC=∠COB=90°,
∴△AOC∽△COB,
∴∠BCO=∠CAO,
∵∠CFB=∠BCO,
∴∠CAO=∠CFB,
∵∠AGC=∠FGB,
∴△AGC∽△FGB,
∴ ,
设EF=x,
∵BF2=BE2+EF2= ,AC2=22+12=5,CO2=22=4,
∴= ,
解这个方程组得:x1=5,x2=-5,
∵点F在线段BC的下方,
∴x1=5(舍去),
∴F(,-5).
【点睛】
本题考查了二次函数的性质、平行线分线段成比例、一元一次方程的解法、一元二次方程方程的解法、相似三角形的判定与性质,做题的关键是相似三角形的判定与性质的灵活运用.
相关试卷
这是一份中考强化训练贵州省兴仁市中考数学模拟 (B)卷(含答案及详解),共33页。试卷主要包含了如图,在中,,,,则的度数为等内容,欢迎下载使用。
这是一份中考强化训练贵州省中考数学高频模拟汇总 卷(Ⅰ)(含详解),共29页。试卷主要包含了下列图像中表示是的函数的有几个等内容,欢迎下载使用。
这是一份中考强化练习贵州省兴仁市中考数学高频模拟汇总 卷(Ⅲ)(含详解),共23页。试卷主要包含了如图,下列条件中不能判定的是,有理数 m等内容,欢迎下载使用。