中考数学真题分类汇编第一期专题40动态问题试题含解析
展开
这是一份中考数学真题分类汇编第一期专题40动态问题试题含解析,共51页。试卷主要包含了选择题等内容,欢迎下载使用。
1.(2018·湖北省孝感·3分)如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是( )
A.B.C.D.
【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.
【解答】解:由题意可得:PB=3﹣t,BQ=2t,
则△PBQ的面积S=PB•BQ=(3﹣t)×2t=﹣t2+3t,
故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.
故选:C.
【点评】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.
2. (2018·山东潍坊·3分)如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是( )
A.B.C.D.
【分析】应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.
【解答】解:当0≤t<2时,S=2t××(4﹣t)=﹣t2+4t;
当2≤t<4时,S=4××(4﹣t)=﹣2t+8;
只有选项D的图形符合.
故选:D.
【点评】本题主要考查了动点问题的函数图象,利用图形的关系求函数的解析式,注意数形结合是解决本题的关键.
3.(2018•湖北黄石•3分)如图,在Rt△PMN中,∠P=90°,PM=PN,MN=6cm,矩形ABCD中AB=2cm,BC=10cm,点C和点M重合,点B、C(M)、N在同一直线上,令Rt△PMN不动,矩形ABCD沿MN所在直线以每秒1cm的速度向右移动,至点C与点N重合为止,设移动x秒后,矩形ABCD与△PMN重叠部分的面积为y,则y与x的大致图象是( )
A.B.C.D.
【分析】在Rt△PMN中解题,要充分运用好垂直关系和45度角,因为此题也是点的移动问题,可知矩形ABCD以每秒1cm的速度由开始向右移动到停止,和Rt△PMN重叠部分的形状可分为下列三种情况,(1)0≤x≤2;(2)2<x≤4;(3)4<x≤6;根据重叠图形确定面积的求法,作出判断即可.
【解答】解:∵∠P=90°,PM=PN,
∴∠PMN=∠PNM=45°,
由题意得:CM=x,
分三种情况:
①当0≤x≤2时,如图1,边CD与PM交于点E,
∵∠PMN=45°,
∴△MEC是等腰直角三角形,
此时矩形ABCD与△PMN重叠部分是△EMC,
∴y=S△EMC=CM•CE=;
故选项B和D不正确;
②如图2,当D在边PN上时,过P作PF⊥MN于F,交AD于G,
∵∠N=45°,CD=2,
∴CN=CD=2,
∴CM=6﹣2=4,
即此时x=4,
当2<x≤4时,如图3,矩形ABCD与△PMN重叠部分是四边形EMCD,
过E作EF⊥MN于F,
∴EF=MF=2,
∴ED=CF=x﹣2,
∴y=S梯形EMCD=CD•(DE+CM)==2x﹣2;
③当4<x≤6时,如图4,矩形ABCD与△PMN重叠部分是五边形EMCGF,过E作EH⊥MN于H,
∴EH=MH=2,DE=CH=x﹣2,
∵MN=6,CM=x,
∴CG=CN=6﹣x,
∴DF=DG=2﹣(6﹣x)=x﹣4,
∴y=S梯形EMCD﹣S△FDG=﹣=×2×(x﹣2+x)﹣=﹣+10x﹣18,
故选项A正确;
故选:A.
【点评】此题是动点问题的函数图象,有难度,主要考查等腰直角三角形的性质和矩形的性质的应用、动点运动问题的路程表示,注意运用数形结合和分类讨论思想的应用.
4.(2018•河南•3分)如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运到点B.图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )
A.B.2C.D.2
5. (2018·广东·3分)如图,点P是菱形ABCD边上的一动点,它从点A出发沿在A→B→C→D路径匀速运动到点D,设△PAD的面积为y,P点的运动时间为x,则y关于x的函数图象大致为( )
A. B.
C. D.
【分析】设菱形的高为h,即是一个定值,再分点P在AB上,在BC上和在CD上三种情况,利用三角形的面积公式列式求出相应的函数关系式,然后选择答案即可.
【解答】解:分三种情况:
①当P在AB边上时,如图1,
设菱形的高为h,
y=AP•h,
∵AP随x的增大而增大,h不变,
∴y随x的增大而增大,
故选项C不正确;
②当P在边BC上时,如图2,
y=AD•h,
AD和h都不变,
∴在这个过程中,y不变,
故选项A不正确;
③当P在边CD上时,如图3,
y=PD•h,
∵PD随x的增大而减小,h不变,
∴y随x的增大而减小,
∵P点从点A出发沿在A→B→C→D路径匀速运动到点D,
∴P在三条线段上运动的时间相同,
故选项D不正确;
故选:B.
【点评】本题考查了动点问题的函数图象,菱形的性质,根据点P的位置的不同,分三段求出△PAD的面积的表达式是解题的关键.
6. (2018•广西桂林•3分)如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是( )
A. B. C. D.
【答案】A
【解析】分析:分别求出当点A与点M、N重合时直线AC的解析式,由AB⊥AC可得直线AB的解析式,从而求出b的值,最终可确定b的取值范围.
详解:当点A与点N重合时,MN⊥AB,
∴MN是直线AB的一部分,
∵N(3,1)
∴此时b=1;
当点A与点M重合时,设直线AC的解析式为y=k1x+m,
由于AC经过点A、C两点,故可得,解得:k1=,
设直线AB的解析式为y=k2x+b,
∵AB⊥AC,
∴,
∴k2=
故直线AB的解析式为y=x+b,
把(,1)代入y=x+b得,b=-.
∴b的取值范围是.
故选A.
点睛:此题考查一次函数基本性质,待定系数求解析式,简单的几何关系.
二.填空题
1.(2018·浙江舟山·4分)如图,在矩形ABCD中,AB=4,AD=2,点E在CD上,DE=1,点F是边AB上一动点,以EF为斜边作Rt△EFP.若点P在矩形ABCD的边上,且这样的直角三角形恰好有两个,则AF的值是________。
【考点】矩形的性质,圆周角定理,切线的性质,直角三角形的性质
【分析】学习了圆周角的推论:直径所对的圆周角是直角,可提供解题思路,不妨以EF为直径作圆,以边界值去讨论该圆与矩形ABCD交点的个数
【解答】解:以EF为斜边的直角三角形的直角顶点P是以EF为直径的圆与矩形边的交点,取EF的中点O,
(1)如图1,当圆O与AD相切于点G时,连结OG,此时点G与点P重合,只有一个点,此时AF=OG=DE=1;
(2)如图2,当圆O与BC相切于点G,连结OG,EG,FG,此时有三个点P可以构成Rt△EFP,
∵OG是圆O的切线,
∴OG⊥BC
∴OG//AB//CD
∵OE=OF,
∴BG=CG,
∴OG=(BF+CE),
设AF=x,则BF=4-x,OG=(4-x+4-1)=(7-x),
则EF=2OG=7-x,EG2=EC2+CG2=9+1=10,FG2=BG2+BF2=1+(4-x)2
在Rt△EFG中,由勾股定理得EF2=EG2+FG2 , 得(7-x)2=10+1+(4-x)2,解得x=
所以当1<AF<时,以EF为直径的圆与矩形ABCD的交点(除了点E和F)只有两个;
(3)因为点F是边AB上一动点:
当点F与A点重合时,AF=0,此时Rt△EFP正好有两个符合题意;
当点F与B点重合时,AF=4,此时Rt△EFP正好有两个符合题意;
故答案为0或1<AF<或4
【点评】正确添加辅助线是解决本题分关键.
三 解答题
1. (2018•山西•13分)综 合 与 探 究
如图,抛物线与 x 轴交于 A , B 两点(点 A 在点 B 的 左 侧 ), 与 y 轴交于点 C ,连接
AC , BC .点 P 是 第 四 象 限 内 抛 物 线 上 的 一 个 动 点 ,点 P 的横坐标为 m ,过 点 P 作 PM x 轴 ,垂 足 为点 M , PM 交 BC 于点 Q ,过点 P 作 PE∥ AC 交 x 轴于点 E ,交 BC 于点 F .
( 1) 求 A , B , C 三点的坐标;
( 2) 试探究在点 P 的 运 动 的 过 程 中 ,是 否 存 在 这 样 的 点 Q ,使 得 以 A , C , Q 为 顶 点 的 三 角 形 是
等腰三角形 .若 存 在 , 请 直.接.写出此时点 Q 的 坐 标 ; 若 不 存 在 , 请 说明理由;
( 3) 请用含 m 的 代 数 式 表 示 线 段 QF 的长,并求出 m 为 何 值 时 QF 有最大值 .
【考点】 几 何 与 二 次 函 数 综 合
【解析】
( 1) 解: 由 y 0 ,得
解得 x1 3 , x2 4 .
点 A , B 的坐标分别为 A(-3,0), B( 4, 0)
由 x 0 ,得 y 4 . 点 C 的 坐 标 为 C( 0, -4) .
( 3) 过点 F 作 FG PQ 于点 G .
则 FG∥x 轴 .由 B( 4, 0), C( 0, -4),得 △O B C为 等 腰 直 角 三 角 形 .
OBC QFG 45 . GQ FG FQ .
PE∥ AC , 1 2 .
FG∥x 轴, 2 3 . 1 3 .
FGP AOC 90 , △FGP∽△AOC .
2(2018•山东滨州•14分)如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.
(1)当x=2时,求⊙P的半径;
(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;
(3)请类比圆的定义(图可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到 点A 的距离等于到 x轴 的距离的所有点的集合.
(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cs∠APD的大小.
【分析】(1)由题意得到AP=PB,求出y的值,即为圆P的半径;
(2)利用两点间的距离公式,根据AP=PB,确定出y关于x的函数解析式,画出函数图象即可;
(3)类比圆的定义描述此函数定义即可;
(4)画出相应图形,求出m的值,进而确定出所求角的余弦值即可.
【解答】解:(1)由x=2,得到P(2,y),
连接AP,PB,
∵圆P与x轴相切,
∴PB⊥x轴,即PB=y,
由AP=PB,得到=y,
解得:y=,
则圆P的半径为;
(2)同(1),由AP=PB,得到(x﹣1)2+(y﹣2)2=y2,
整理得:y=(x﹣1)2+1,即图象为开口向上的抛物线,
画出函数图象,如图②所示;
(3)给(2)中所得函数图象进行定义:此函数图象可以看成是到点A的距离等于到x轴的距离的所有点的集合;
故答案为:点A;x轴;
(4)连接CD,连接AP并延长,交x轴于点F,
设PE=a,则有EF=a+1,ED=,
∴D坐标为(1+,a+1),
代入抛物线解析式得:a+1=(1﹣a2)+1,
解得:a=﹣2+或a=﹣2﹣(舍去),即PE=﹣2+,
在Rt△PED中,PE=﹣2,PD=1,
则cs∠APD==﹣2.
【点评】此题属于圆的综合题,涉及的知识有:两点间的距离公式,二次函数的图象与性质,圆的性质,勾股定理,弄清题意是解本题的关键.
3(2018•江苏扬州•12分)如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.
(1)当t=2时,线段PQ的中点坐标为 (,2) ;
(2)当△CBQ与△PAQ相似时,求t的值;
(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.
【分析】(1)先根据时间t=2,和速度可得动点P和Q的路程OP和AQ的长,再根据中点坐标公式可得结论;
(2)根据矩形的性质得:∠B=∠PAQ=90°,所以当△CBQ与△PAQ相似时,存在两种情况:
①当△PAQ∽△QBC时,,②当△PAQ∽△CBQ时,,分别列方程可得t的值;
(3)根据t=1求抛物线的解析式,根据Q(3,2),M(0,2),可得MQ∥x轴,∴KM=KQ,KE⊥MQ,画出符合条件的点D,证明△KEQ∽△QMH,列比例式可得点D的坐标,同理根据对称可得另一个点D.
【解答】解:(1)如图1,∵点A的坐标为(3,0),
∴OA=3,
当t=2时,OP=t=2,AQ=2t=4,
∴P(2,0),Q(3,4),
∴线段PQ的中点坐标为:(,),即(,2);
故答案为:(,2);
(2)如图1,∵当点P与点A重合时运动停止,且△PAQ可以构成三角形,
∴0<t<3,
∵四边形OABC是矩形,
∴∠B=∠PAQ=90°
∴当△CBQ与△PAQ相似时,存在两种情况:
①当△PAQ∽△QBC时,,
∴,
4t2﹣15t+9=0,
(t﹣3)(t﹣)=0,
t1=3(舍),t2=,
②当△PAQ∽△CBQ时,,
∴,
t2﹣9t+9=0,
t=,
∵>7,
∴x=不符合题意,舍去,
综上所述,当△CBQ与△PAQ相似时,t的值是或;
(3)当t=1时,P(1,0),Q(3,2),
把P(1,0),Q(3,2)代入抛物线y=x2+bx+c中得:
,解得:,
∴抛物线:y=x2﹣3x+2=(x﹣)2﹣,
∴顶点k(,﹣),
∵Q(3,2),M(0,2),
∴MQ∥x轴,
作抛物线对称轴,交MQ于E,
∴KM=KQ,KE⊥MQ,
∴∠MKE=∠QKE=∠MKQ,
如图2,∠MQD=∠MKQ=∠QKE,
设DQ交y轴于H,
∵∠HMQ=∠QEK=90°,
∴△KEQ∽△QMH,
∴,
∴,
∴MH=2,
∴H(0,4),
易得HQ的解析式为:y=﹣x+4,
则,
x2﹣3x+2=﹣x+4,
解得:x1=3(舍),x2=﹣,
∴D(﹣,);
同理,在M的下方,y轴上存在点H,如图3,使∠HQM=∠MKQ=∠QKE,
由对称性得:H(0,0),
易得OQ的解析式:y=x,
则,
x2﹣3x+2=x,
解得:x1=3(舍),x2=,
∴D(,);
综上所述,点D的坐标为:D(﹣,)或(,).
【点评】本题是二次函数与三角形相似的综合问题,主要考查相似三角形的判定和性质的综合应用,三角形和四边形的面积,二次函数的最值问题的应用,函数的交点等知识,本题比较复杂,注意用t表示出线段长度,再利用相似即可找到线段之间的关系,代入可解决问题.
4(2018•山东菏泽•10分)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.
(1)求此抛物线的表达式;
(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积;
(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.
【考点】HF:二次函数综合题.
【分析】(1)根据题意可以求得a、b的值,从而可以求得抛物线的表达式;
(2)根据题意可以求得AD的长和点E到AD的距离,从而可以求得△EAD的面积;
(3)根据题意可以求得直线AB的函数解析式,再根据题意可以求得△ABP的面积,然后根据二次函数的性质即可解答本题.
【解答】解:(1)∵抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),
∴,得,
∴此抛物线的表达式是y=x2+4x﹣5;
(2)∵抛物线y=x2+4x﹣5交y轴于点A,
∴点A的坐标为(0,﹣5),
∵AD∥x轴,点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,
∴点E的纵坐标是5,点E到AD的距离是10,
当y=﹣5时,﹣5=x2+4x﹣5,得x=0或x=﹣4,
∴点D的坐标为(﹣4,﹣5),
∴AD=4,
∴△EAD的面积是:=20;
(3)设点P的坐标为(p,p2+4p﹣5),如右图所示,
设过点A(0,﹣5),点B(﹣5,0)的直线AB的函数解析式为y=mx+n,
,得,
即直线AB的函数解析式为y=﹣x﹣5,
当x=p时,y=﹣p﹣5,
∵OB=5,
∴△ABP的面积是:S==,
∵点P是直线AB下方的抛物线上一动点,
∴﹣5<p<0,
∴当p=﹣时,S取得最大值,此时S=,点p的坐标是(,﹣),
即点p的坐标是(,﹣)时,△ABP的面积最大,此时△ABP的面积是.
【点评】本题考查二次函数综合题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想和二次函数的性质解答.
5 (2018•江西•9分)在菱形中,,点是射线上一动点,以为边向右侧作等边,点的位置随点的位置变化而变化.
(1)如图1,当点在菱形内部或边上时,连接,与的数量关系是 ,
与的位置关系是 ;
(2)当点在菱形外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,
请说明理由(选择图2,图3中的一种情况予以证明或说理).
(3) 如图4,当点在线段的延长线上时,连接,若 , ,求四边形
的面积.
【解析】 (1)① BP=CE 理由如下:
连接AC
∵菱形ABCD,∠ABC=60°
∴△ABC是等边三角形
∴AB=AC ∠BAC=60°
∵△APE是等边三角形
∴AP=AE ∠PAE=60°
∴∠BAP=∠CAE
∴△ABP≌△ACE ∴BP=CE ★★
② CE⊥AD
∵菱形对角线平分对角
∴
∵△ABP≌△ACE
∴
∵
∴
∴
∴
∴CF⊥AD 即CE⊥AD ★★
(2)(1)中的结论:BP=CE , CE⊥AD 仍然成立,理由如下:
连接AC
∵菱形ABCD,∠ABC=60°
∴△ABC和△ACD都是等边三角形
∴AB=AC ∠BAD=120°
∠BAP=120°+∠DAP
∵△APE是等边三角形
∴AP=AE ∠PAE=60°
∴∠CAE=60°+60°+∠DAP=120°+∠DAP
∴∠BAP=∠CAE
∴△ABP≌△ACE ∴BP=CE
∴∠DCE=30° ∵∠ADC=60°
∴∠DCE+∠ADC=90° ∴∠CHD=90° ∴CE⊥AD
∴(1)中的结论:BP=CE , CE⊥AD 仍然成立. ★★★
(3) 连接AC交BD于点O , CE, 作EH⊥AP于H
∵四边形ABCD是菱形
∴AC⊥BD BD平分∠ABC
∵∠ABC=60°,
∴∠ABO=30° ∴ BO=DO=3
∴BD=6
由(2)知CE⊥AD
∵AD∥BC ∴CE⊥BC
∵
∴
由(2)知BP=CE=8 ∴DP=2 ∴OP=5
∴
∵△APE是等边三角形, ∴
∵
∴
∴四边形ADPE的面积是 .
6 (2018•江苏盐城•10分)如图①,在平面直角坐标系 中,抛物线 经过点 、 两点,且与 轴交于点 .
(1)求抛物线的表达式;
(2)如图②,用宽为4个单位长度的直尺垂直于 轴,并沿 轴左右平移,直尺的左右两边所在的直线与抛物线相交于 、 两点(点 在点 的左侧),连接 ,在线段 上方抛物线上有一动点 ,连接 、 .(Ⅰ)若点 的横坐标为 ,求 面积的最大值,并求此时点 的坐标;
(Ⅱ)直尺在平移过程中, 面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.
【答案】(1)解:∵抛物线 经过点 、 两点,∴ 解得
∴抛物线
(2)解:(I)∵点P的横坐标是 ,当x= 时, ,则点P( , ),
∵直尺的宽度为4个单位长度,
∴点Q的横坐标为 +4= ,则当x= 时,y= ,
∴点Q( , ),
设直线PQ的表达式为:y=kx+c,由P( , ),Q( , ),可得
解得 ,则直线PQ的表达式为:y=-x+ ,
如图②,过点D作直线DE垂直于x轴,交PQ于点E,设D(m, ),则E(m,-m+ ),
则S△PQD=S△PDE+S△QDE= = = = ,
∵
相关试卷
这是一份2023中考数学真题专项汇编特训 专题31几何综合压轴问题(共40题)(原卷版+解析),共151页。试卷主要包含了,为锐角,且,【模型建立】,课本再现,问题情境,[问题探究],【问题呈现】等内容,欢迎下载使用。
这是一份2022年中考数学真题分类练习之动态问题及真题答案,共44页。
这是一份2023年全国各地中考数学真题分类汇编之动点综合问题(含解析),共57页。