终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年中考数学真题汇编:动态问题(含解析)

    立即下载
    加入资料篮
    2022年中考数学真题汇编:动态问题(含解析)第1页
    2022年中考数学真题汇编:动态问题(含解析)第2页
    2022年中考数学真题汇编:动态问题(含解析)第3页
    还剩73页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年中考数学真题汇编:动态问题(含解析)

    展开

    这是一份2022年中考数学真题汇编:动态问题(含解析),共76页。
    2022年中考数学真题汇编:动态问题

    1.(2022大庆)平面直角坐标系中,点M在y轴的非负半轴上运动,点N在x轴上运动,满足.点Q为线段的中点,则点Q运动路径的长为( )
    A. B. C. D.
    2.(2022十堰)如图,是等边的外接圆,点是弧上一动点(不与,重合),下列结论:①;②;③当最长时,;④,其中一定正确的结论有( )

    A. 1个 B. 2个 C. 3个 D. 4个
    3.(2022齐齐哈尔)如图①所示(图中各角均为直角),动点Р从点A出发,以每秒1个单位长度的速度沿A→B→C→D→E路线匀速运动,△AFP的面积y随点Р运动的时间x(秒)之间的函数关系图象如图②所示,下列说法正确的是( )

    A. AF=5 B. AB=4 C. DE=3 D. EF=8
    4.(2022恩施州)如图,在四边形ABCD中,∠A=∠B=90°,AD=10cm,BC=8cm,点P从点D出发,以1cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )

    A. 当时,四边形ABMP为矩形
    B. 当时,四边形CDPM为平行四边形
    C. 当时,
    D. 当时,或6s
    5.(2022鄂州)如图,定直线MNPQ,点B、C分别为MN、PQ上的动点,且BC=12,BC在两直线间运动过程中始终有∠BCQ=60°.点A是MN上方一定点,点D是PQ下方一定点,且AEBCDF,AE=4,DF=8,AD=24,当线段BC在平移过程中,AB+CD的最小值为( )

    A. 24 B. 24 C. 12 D. 12
    6.(2022江汉油田、潜江、天门、仙桃)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为,小正方形与大正方形重叠部分的面积为,若,则S随t变化的函数图象大致为( )

    A. B.
    C. D.
    7.(2022绥化)如图,在矩形中,P是边上的一个动点,连接,,过点B作射线,交线段的延长线于点E,交边于点M,且使得,如果,,,,其中.则下列结论中,正确的个数为( )
    (1)y与x的关系式为;(2)当时,;(3)当时,.

    A. 0个 B. 1个 C. 2个 D. 3个
    8.(2022大庆)如图,正方形中,点E,F分别是边上的两个动点,且正方形的周长是周长的2倍,连接分别与对角线交于点M,N.给出如下几个结论:①若,则;②;③若,则;④若,则.其中正确结论的序号为____________.

    9.(2022龙东地区)在矩形ABCD中,,,点E在边CD上,且,点P是直线BC上的一个动点.若是直角三角形,则BP的长为________.
    10.(2022黄冈、孝感、咸宁)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,t的值为________.

    11.(2022龙东地区)如图,菱形ABCD中,对角线AC,BD相交于点O,,,AH是的平分线,于点E,点P是直线AB上的一个动点,则的最小值是________.

    12.(2022河北)如图,点在抛物线C:上,且在C的对称轴右侧.

    (1)写出C的对称轴和y的最大值,并求a的值;
    (2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为,.平移该胶片,使所在抛物线对应的函数恰为.求点移动的最短路程.


    13.(2022河南)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.

    (1)求证:∠BOC+∠BAD=90°.
    (2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得.已知铁环⊙O的半经为25cm,推杆AB的长为75cm,求此时AD的长.


    14.(2022绥化)如图所示,在的内接中,,,作于点P,交于另一点B,C是上的一个动点(不与A,M重合),射线交线段的延长线于点D,分别连接和,交于点E.

    (1)求证:.
    (2)若,,求的长.
    (3)在点C运动过程中,当时,求的值.


    15.(2022河北)如图,四边形ABCD中,,∠ABC=90°,∠C=30°,AD=3,,DH⊥BC于点H.将△PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中∠Q=90°,∠QPM=30°,.

    (1)求证:△PQM≌△CHD;
    (2)△PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.
    ①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;
    ②如图2,点K在BH上,且.若△PQM右移的速度为每秒1个单位长,绕点D旋转的速度为每秒5°,求点K在△PQM区域(含边界)内的时长;
    ③如图3.在△PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).


    16.(2022哈尔滨)在平面直角坐标系中,点O为坐标原点,抛物线经过点,点,与y轴交于点C.

    (1)求a,b的值;
    (2)如图1,点D在该抛物线上,点D的横坐标为,过点D向y轴作垂线,垂足为点E.点P为y轴负半轴上的一个动点,连接、设点P的纵坐标为t,的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);
    (3)如图2,在(2)的条件下,连接,点F在上,过点F向y轴作垂线,垂足为点H,连接交y轴于点G,点G为的中点,过点A作y轴的平行线与过点P所作的x轴的平行线相交于点N,连接,,延长交于点M,点R在上,连接,若,,求直线的解析式.


    17.(2022绥化)在平面直角坐标系中,已知一次函数与坐标轴分别交于,两点,且与反比例函数的图象在第一象限内交于P,K两点,连接,的面积为.

    (1)求一次函数与反比例函数的解析式;
    (2)当时,求x的取值范围;
    (3)若C为线段上的一个动点,当最小时,求的面积.


    18.(2022龙东地区)如图,在平面直角坐标系中,平行四边形ABCD的边AB在x轴上,顶点D在y轴的正半轴上,M为BC的中点,OA、OB的长分别是一元二次方程的两个根,,动点P从点D出发以每秒1个单位长度的速度沿折线向点B运动,到达B点停止.设运动时间为t秒,的面积为S.

    (1)求点C的坐标;
    (2)求S关于t的函数关系式,并写出自变量t的取值范围;
    (3)在点P的运动过程中,是否存在点P,使是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.


    19.(2022齐齐哈尔)综合与探究
    如图,某一次函数与二次函数的图象交点为A(-1,0),B(4,5).

    (1)求抛物线的解析式;
    (2)点C为抛物线对称轴上一动点,当AC与BC的和最小时,点C的坐标为 ;
    (3)点D为抛物线位于线段AB下方图象上一动点,过点D作DE⊥x轴,交线段AB于点E,求线段DE长度最大值;
    (4)在(2)条件下,点M为y轴上一点,点F为直线AB上一点,点N为平面直角坐标系内一点,若以点C,M,F,N为顶点的四边形是正方形,请直接写出点N的坐标.


    20.(2022绥化)如图,抛物线交y轴于点,并经过点,过点A作轴交抛物线于点B,抛物线的对称轴为直线,D点的坐标为,连接,,.点E从A点出发,以每秒个单位长度的速度沿着射线运动,设点E的运动时间为m秒,过点E作于F,以为对角线作正方形.
      
    (1)求抛物线的解析式;
    (2)当点G随着E点运动到达上时,求此时m的值和点G的坐标;
    (3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由.


    21.(2022十堰)已知抛物线与轴交于点和点两点,与轴交于点.

    (1)求抛物线的解析式;
    (2)点是抛物线上一动点(不与点,,重合),作轴,垂足为,连接.
    ①如图1,若点在第三象限,且,求点的坐标;
    ②直线交直线于点,当点关于直线的对称点落在轴上时,求四边形的周长.


    22.(2022鄂州)如图1,在平面直角坐标系中,Rt△OAB的直角边OA在y轴的正半轴上,且OA=6,斜边OB=10,点P为线段AB上一动点.

    (1)请直接写出点B的坐标;
    (2)若动点P满足∠POB=45°,求此时点P的坐标;
    (3)如图2,若点E为线段OB的中点,连接PE,以PE为折痕,在平面内将△APE折叠,点A的对应点为A',当PA'⊥OB时,求此时点P的坐标;
    (4)如图3,若F为线段AO上一点,且AF=2,连接FP,将线段FP绕点F顺时针方向旋转60°得线段FG,连接OG,当OG取最小值时,请直接写出OG的最小值和此时线段FP扫过的面积.


    23.(2022江汉油田、潜江、天门、仙桃)如图,在平面直角坐标系中,已知抛物线的顶点为A,与y轴交于点C,线段轴,交该抛物线于另一点B.

    (1)求点B的坐标及直线的解析式:
    (2)当二次函数的自变量x满足时,此函数的最大值为p,最小值为q,且.求m的值:
    (3)平移抛物线,使其顶点始终在直线上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.


    24.(2022荆州)如图1,在矩形ABCD中,AB=4,AD=3,点O是边AB上一个动点(不与点A重合),连接OD,将△OAD沿OD折叠,得到△OED;再以O为圆心,OA的长为半径作半圆,交射线AB于G,连接AE并延长交射线BC于F,连接EG,设OA=x.

    (1)求证:DE是半圆O的切线;
    (2)当点E落在BD上时,求x的值;
    (3)当点E落在BD下方时,设△AGE与△AFB面积的比值为y,确定y与x之间的函数关系式;
    (4)直接写出:当半圆O与△BCD的边有两个交点时,x的取值范围.


    25.(2022随州)如图1,平面直角坐标系xOy中,抛物线与x轴分则点A和点,与y轴交于点C,对称轴为直线,且,P为抛物线上一动点.

    (1)直接写出抛物线的解析式;
    (2)如图2,连接AC,当点P在直线AC上方时,求四边形PABC面积的最大值,并求出此时P点的坐标;
    (3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.


    26.(2022黄冈、孝感、咸宁)抛物线y=x2-4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.

    (1)直接写出点B和点D的坐标;
    (2)如图1,连接OD,P为x轴上的动点,当tan∠PDO=时,求点P的坐标;
    (3)如图2,M是点B关于抛物线对称轴的对称点,Q是抛物线上的动点,它的横坐标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E.设△BEQ和△BEM的面积分别为S1和S2,求的最大值.

    2022年中考数学真题汇编:动态问题参考答案
    1.(2022大庆)平面直角坐标系中,点M在y轴的非负半轴上运动,点N在x轴上运动,满足.点Q为线段的中点,则点Q运动路径的长为( )
    A. B. C. D.
    【答案】解:设点M的坐标为(0,m),点N的坐标为(n,0),则点Q的坐标为,
    ∵,
    ∴,(,) ,
    ∵当时,,
    ∴,即,
    ∴此时点Q在一条线段上运动,线段的一个端点在x轴的负半轴上,坐标为(-4,0),另一端在y轴的负半轴上,坐标为(0,-4),
    ∴此时点Q的运动路径长为;
    ∵当时,,
    ∴,即,
    ∴此时点Q在一条线段上运动,线段的一个端点在x轴的正半轴上,坐标为(4,0),另一端在y轴的负半轴上,坐标为(0,-4),
    ∴此时点Q的运动路径长为;
    综上分析可知,点Q运动路径的长为,故B正确.
    故选:B.
    2.(2022十堰)如图,是等边的外接圆,点是弧上一动点(不与,重合),下列结论:①;②;③当最长时,;④,其中一定正确的结论有( )

    A. 1个 B. 2个 C. 3个 D. 4个
    【答案】解:∵△ABC等边三角形,
    ∴AB=BC,∠ABC=60°,
    ∴,
    ∴∠ADB=∠BDC,故①正确;
    ∵点是上一动点,
    ∴不一定等于,
    ∴DA=DC不一定成立,故②错误;
    当最长时,DB为圆O的直径,
    ∴∠BCD=90°,
    ∵是等边的外接圆,∠ABC=60°,
    ∴BD⊥AC,
    ∴∠ABD=∠CBD=30°,
    ∴,故③正确;
    如图,延长DA至点E,使AE=DC,

    ∵四边形ABCD为圆O的内接四边形,
    ∴∠BCD+∠BAD=180°,
    ∵∠BAE+∠BAD=180°,
    ∴∠BAE=∠BCD,
    ∵AB=BC,AE=CD,
    ∴△ABE≌△CBD,
    ∴BD=AE,∠ABE=∠DBC,
    ∴∠ABE+∠ABD=∠DBC+∠ABD=∠ABC=60°,
    ∴△BDE是等边三角形,
    ∴DE=BD,
    ∵DE=AD+AE=AD+CD,
    ∴,故④正确;
    ∴正确的有3个.
    故选:C.
    3.(2022齐齐哈尔)如图①所示(图中各角均为直角),动点Р从点A出发,以每秒1个单位长度的速度沿A→B→C→D→E路线匀速运动,△AFP的面积y随点Р运动的时间x(秒)之间的函数关系图象如图②所示,下列说法正确的是( )

    A. AF=5 B. AB=4 C. DE=3 D. EF=8
    【答案】解:坐标系中对应点运动到B点


    B选项正确

    即:
    解得:
    A选项错误
    12~16s对应的DE段

    C选项错误
    6~12s对应的CD段


    D选项错误
    故选:B.
    4.(2022恩施州)如图,在四边形ABCD中,∠A=∠B=90°,AD=10cm,BC=8cm,点P从点D出发,以1cm/s的速度向点A运动,点M从点B同时出发,以相同的速度向点C运动,当其中一个动点到达端点时,两个动点同时停止运动.设点P的运动时间为t(单位:s),下列结论正确的是( )

    A. 当时,四边形ABMP为矩形
    B. 当时,四边形CDPM为平行四边形
    C. 当时,
    D. 当时,或6s
    【答案】解:由题意得PD=t,AP=AD-PD=10-t,BM=t,CM=8-t,∠A=∠B=90°,
    A、当时,AP=10-t=6 cm,BM=4 cm,AP≠BM,则四边形ABMP不是矩形,该选项不符合题意;
    B、当时,PD=5 cm,CM=8-5=3 cm,PD≠CM,则四边形CDPM不是平行四边形,该选项不符合题意;
    作CE⊥AD于点E,则∠CEA=∠A=∠B=90°,

    ∴四边形ABCE是矩形,
    ∴BC=AE=8 cm,
    ∴DE=2 cm,
    PM=CD,且PQ与CD不平行,作MF⊥AD于点F,CE⊥AD于点E,

    ∴四边形CEFM矩形,
    ∴FM=CE;
    ∴Rt△PFM≌Rt△DEC(HL),
    ∴PF=DE=2,EF=CM=8-t,
    ∴AP=10-4-(8-t)=10-t,
    解得t=6 s;
    PM=CD,且PM∥CD,

    ∴四边形CDPM是平行四边形,
    ∴DP=CM,
    ∴t=8-t,
    解得t=4 s;
    综上,当PM=CD时,t=4s或6s;选项C不符合题意;选项D符合题意;
    故选:D.
    5.(2022鄂州)如图,定直线MNPQ,点B、C分别为MN、PQ上的动点,且BC=12,BC在两直线间运动过程中始终有∠BCQ=60°.点A是MN上方一定点,点D是PQ下方一定点,且AEBCDF,AE=4,DF=8,AD=24,当线段BC在平移过程中,AB+CD的最小值为( )

    A. 24 B. 24 C. 12 D. 12
    【答案】解:如图所示,过点F作交BC于H,连接EH,
    ∵,
    ∴四边形CDFH是平行四边形,
    ∴CH=DF=8,CD=FH,
    ∴BH=4,
    ∴BH=AE=4,
    又∵,
    ∴四边形ABHE是平行四边形,
    ∴AB=HE,
    ∵,
    ∴当E、F、H三点共线时,EH+HF有最小值EF即AB+CD有最小值EF,
    延长AE交PQ于G,过点E作ET⊥PQ于T,过点A作AL⊥PQ于L,过点D作DK⊥PQ于K,
    ∵,
    ∴四边形BEGC是平行四边形,∠EGT=∠BCQ=60°,
    ∴EG=BC=12,
    ∴,
    同理可求得,,
    ∴,
    ∵AL⊥PQ,DK⊥PQ,
    ∴,
    ∴△ALO∽△DKO,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    故选C.

    6.(2022江汉油田、潜江、天门、仙桃)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为,小正方形与大正方形重叠部分的面积为,若,则S随t变化的函数图象大致为( )

    A. B.
    C. D.
    【答案】解:根据题意,设小正方形运动的速度为v,由于v分三个阶段;
    ①小正方形向右未完全穿入大正方形,S=2×2-vt×1=4-vt(vt≤1);
    ②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3;
    ③小正方形穿出大正方形,S=2×2-(1×1-vt)=3+vt(vt≤1).
    分析选项可得,A符合,C中面积减少太多,不符合.
    故选:A.
    7.(2022绥化)如图,在矩形中,P是边上的一个动点,连接,,过点B作射线,交线段的延长线于点E,交边于点M,且使得,如果,,,,其中.则下列结论中,正确的个数为( )
    (1)y与x的关系式为;(2)当时,;(3)当时,.

    A. 0个 B. 1个 C. 2个 D. 3个
    【答案】解:(1)∵在矩形中,
    ∴,,,,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵,,,
    ∴,
    解得:,
    故(1)正确;
    (2)当时,,
    ∴,
    又∵,
    ∴,
    故(2)正确;
    (3)过点M作垂足为F,

    ∴,
    ∵当时,此时,,
    ∴,
    在中,由勾股定理得:,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,,
    ∴,

    故(3)不正确;
    故选:C.
    8.(2022大庆)如图,正方形中,点E,F分别是边上的两个动点,且正方形的周长是周长的2倍,连接分别与对角线交于点M,N.给出如下几个结论:①若,则;②;③若,则;④若,则.其中正确结论的序号为____________.

    【答案】解:∵正方形的周长是周长的2倍,
    ∴,

    ①若,则,故①不正确;
    如图,在的延长线上取点,使得,

    四边形是正方形,
    ,,

    ,,,
    ,,

    ,,,





    即,故②正确;


    如图,作于点,连接,
    则,
    ,,

    同理可得,

    关于对称轴,关于对称,



    是直角三角形,
    ③若,

    ,故③不正确,

    若,
    即,


    ,,
    又,


    即,





    故④不正确.
    故答案为:②.
    9.(2022龙东地区)在矩形ABCD中,,,点E在边CD上,且,点P是直线BC上的一个动点.若是直角三角形,则BP的长为________.
    【答案】解:在矩形ABCD中,,,∠BAD=∠B=∠BCD=∠ADC=90°,
    如图,当∠APE=90°时,


    ∴∠APB+∠CPE=90°,
    ∵∠BAP+∠APB=90°,
    ∴∠BAP=∠CPE,
    ∵∠B=∠C=90°,
    ∴△ABP∽△PCE,
    ∴,即,
    解得:BP=6;
    如图,当∠AEP=90°时,


    ∴∠AED+∠PEC=90°,
    ∵∠DAE+∠AED=90°,
    ∴∠DAE=∠PEC,
    ∵∠C=∠D=90°,
    ∴△ADE∽△ECP,
    ∴,即,
    解得:,
    ∴;
    如图,当∠PAE=90°时,过点P作PF⊥DA交DA延长线于点F,


    根据题意得∠BAF=∠ABP=∠F=90°,
    ∴四边形ABPF为矩形,
    ∴PF=AB=9,AF=PB,
    ∵∠PAF+∠DAE=90°,∠PAF+∠APF=90°,
    ∴∠DAE=∠APF,
    ∵∠F=∠D=90°,
    ∴△APF∽△EAD,
    ∴,即,
    解得:,即;
    综上所述,BP的长为或或6.
    故答案为:或或6
    10.(2022黄冈、孝感、咸宁)如图1,在△ABC中,∠B=36°,动点P从点A出发,沿折线A→B→C匀速运动至点C停止.若点P的运动速度为1cm/s,设点P的运动时间为t(s),AP的长度为y(cm),y与t的函数图象如图2所示.当AP恰好平分∠BAC时,t的值为________.

    【答案】根据函数图像可得AB=4,AB+BC=8,
    ∴BC=AB=4,
    ∵∠B=36°,
    ∴,
    作∠BAC的平分线AD,

    ∴∠BAD=∠DAC=36°=∠B,
    ∴AD=BD,,
    ∴AD=BD=CD,
    设,
    ∵∠DAC=∠B=36°,
    ∴,
    ∴,
    ∴,
    解得: ,(舍去),
    ∴,
    此时(s),
    故答案为:.
    11.(2022龙东地区)如图,菱形ABCD中,对角线AC,BD相交于点O,,,AH是的平分线,于点E,点P是直线AB上的一个动点,则的最小值是________.

    【答案】解:如图,作点O关于AB的对称点F,连接OF交AB于G,连接PE交直线AB于P,连接PO,则PO=PF,此时,PO+PE最小,最小值=EF,

    ∵菱形ABCD,
    ∴AC⊥BD,OA=OC,O=OD,AD=AB=3,
    ∵∠BAD=60°,
    ∴△ABD是等边三角形,
    ∴BD=AB=3,∠BAO=30°,
    ∴OB=,
    ∴OA=,
    ∴点O关于AB的对称点F,
    ∴OF⊥AB,OF=2OG=OA=,
    ∴∠AOG=60°,
    ∵CE⊥AH于E,OA=OC,
    ∴OE=OC=OA=,
    ∵AH平分∠BAC,
    ∴∠CAE=15°,
    ∴∠AEC=∠CAE=15°,
    ∴∠DOE=∠AEC+∠CAE=30°,
    ∴∠DOE+∠AOG=30°+60°=90°,
    ∴∠FOE=90°,
    ∴由勾股定理,得EF=,
    ∴PO+PE最小值=.
    故答案为:.
    12.(2022河北)如图,点在抛物线C:上,且在C的对称轴右侧.

    (1)写出C的对称轴和y的最大值,并求a的值;
    (2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为,.平移该胶片,使所在抛物线对应的函数恰为.求点移动的最短路程.
    【答案】
    (1),
    ∴对称轴为直线,
    ∵,
    ∴抛物线开口向下,有最大值,即的最大值为4,
    把代入中得:

    解得:或,
    ∵点在C的对称轴右侧,
    ∴;
    (2)∵,
    ∴是由向左平移3个单位,再向下平移4个单位得到,
    平移距离为,
    ∴移动的最短路程为5.
    13.(2022河南)为弘扬民族传统体育文化,某校将传统游戏“滚铁环”列入了校运动会的比赛项目.滚铁环器材由铁环和推杆组成.小明对滚铁环的启动阶段进行了研究,如图,滚铁环时,铁环⊙O与水平地面相切于点C,推杆AB与铅垂线AD的夹角为∠BAD,点O,A,B,C,D在同一平面内.当推杆AB与铁环⊙O相切于点B时,手上的力量通过切点B传递到铁环上,会有较好的启动效果.

    (1)求证:∠BOC+∠BAD=90°.
    (2)实践中发现,切点B只有在铁环上一定区域内时,才能保证铁环平稳启动.图中点B是该区域内最低位置,此时点A距地面的距离AD最小,测得.已知铁环⊙O的半经为25cm,推杆AB的长为75cm,求此时AD的长.
    【答案】
    (1)证明:⊙O与水平地面相切于点C,



    AB与⊙O相切于点B,


    过点作,





    即∠BOC+∠BAD=90°.
    (2)如图,过点作的平行线,交于点,交于点,

    ,则四边形是矩形,
    , ,

    在中,,,
    (cm),
    在中,,cm,
    (cm),
    (cm),
    (cm),
    cm,
    (cm).
    14.(2022绥化)如图所示,在的内接中,,,作于点P,交于另一点B,C是上的一个动点(不与A,M重合),射线交线段的延长线于点D,分别连接和,交于点E.

    (1)求证:.
    (2)若,,求的长.
    (3)在点C运动过程中,当时,求的值.
    【答案】
    (1)解:∵AB⊥MN,
    ∴∠APM=90°,
    ∴∠D+∠DMP=90°,
    又∵∠DMP+∠NAC=180°,∠MAN=90°,
    ∴∠DMP+∠CAM=90°,
    ∴∠CAM=∠D,
    ∵∠CMA=∠ABC,
    ∴.
    (2)连接OC,
    ∵,
    ∴MN是直径,
    ∵,
    ∴OM=ON=OC=5,
    ∵,且,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴,
    ∵,
    ∴OC⊥MN,
    ∴∠COE=90°,
    ∵AB⊥MN,
    ∴∠BPE=90°,
    ∴∠BPE=∠COE,
    又∵∠BEP=∠CEO,

    ∴,

    由,
    ∴,
    ∴,

    ∴.

    (3)过C点作CG⊥MN,垂足为G,连接CN,
    ∵MN是直径,
    ∴∠MCN=90°,
    ∴∠CNM+∠DMP=90°,
    ∵∠D+∠DMP=90°,
    ∴∠D=∠CNM,
    ∵,
    ∴,






    ∵,且,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∴,
    ∵∠CGE=∠BPE=90°,∠CEG =∠BEP,
    ∴,
    ∴,

    ∴,
    ∴,,
    ∴,
    ∴值为.

    15.(2022河北)如图,四边形ABCD中,,∠ABC=90°,∠C=30°,AD=3,,DH⊥BC于点H.将△PQM与该四边形按如图方式放在同一平面内,使点P与A重合,点B在PM上,其中∠Q=90°,∠QPM=30°,.

    (1)求证:△PQM≌△CHD;
    (2)△PQM从图1的位置出发,先沿着BC方向向右平移(图2),当点P到达点D后立刻绕点D逆时针旋转(图3),当边PM旋转50°时停止.
    ①边PQ从平移开始,到绕点D旋转结束,求边PQ扫过的面积;
    ②如图2,点K在BH上,且.若△PQM右移的速度为每秒1个单位长,绕点D旋转的速度为每秒5°,求点K在△PQM区域(含边界)内的时长;
    ③如图3.在△PQM旋转过程中,设PQ,PM分别交BC于点E,F,若BE=d,直接写出CF的长(用含d的式子表示).
    【答案】
    (1)∵,

    则在四边形中

    故四边形为矩形

    在中,
    ∴,

    ∴;
    (2)①过点Q作于S

    由(1)得:
    在中,

    平移扫过面积:
    旋转扫过面积:
    故边PQ扫过的面积:
    ②运动分两个阶段:平移和旋转
    平移阶段:


    旋转阶段:
    由线段长度得:
    取刚开始旋转状态,以PM为直径作圆,则H为圆心,延长DK与圆相交于点G,连接GH,GM,过点G作于T

    设,则
    在中:


    设,则,,
    ,,
    ∵DM为直径

    在中 :
    在中:
    在中:
    ∴,
    PQ转过的角度:
    s
    总时间:
    ③设CF=m,则EF=BC-BE-CF=9-d-m,CE=9-d,
    当旋转角<30°时,DE在DH的左侧,如图:

    ∵∠EDF=30°,∠C=30°,
    ∴∠EDF=∠C,
    又∵∠DEF=∠CED,
    ∴,
    ∴,即,
    ∴,
    ∵在中,,
    ∴,

    当旋转角≥30°时,DE在DH上或右侧,如图:CF=m,则EF=BC-BE-CF=9-d-m,CE=9-d,
    同理:可得


    综上所述:.
    16.(2022哈尔滨)在平面直角坐标系中,点O为坐标原点,抛物线经过点,点,与y轴交于点C.

    (1)求a,b的值;
    (2)如图1,点D在该抛物线上,点D的横坐标为,过点D向y轴作垂线,垂足为点E.点P为y轴负半轴上的一个动点,连接、设点P的纵坐标为t,的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);
    (3)如图2,在(2)的条件下,连接,点F在上,过点F向y轴作垂线,垂足为点H,连接交y轴于点G,点G为的中点,过点A作y轴的平行线与过点P所作的x轴的平行线相交于点N,连接,,延长交于点M,点R在上,连接,若,,求直线的解析式.
    【答案】
    (1)解:∵抛物线经过,,
    ∴,
    解得,
    (2)解:由(1)得,点D的横坐标为
    ∴点D纵坐标为
    ∴,
    ∵轴
    ∴,
    ∵点P的纵坐标为t,
    ∴,
    ∴;
    (3)解:如图所示,过点C作,交NR的延长线于点K,过点K作轴于点T,

    ∵,当时,,
    ∴,
    ∴,
    ∵轴,轴,
    ∴,
    ∵点G为的中点,
    ∴,
    在和中,

    ∴(AAS),
    ∴,,
    设直线OA的解析式为:,将点代入得,

    解得,,
    ∴直线OA的解析式:,
    当x=2时,,
    ∴,,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵轴,轴,
    ∴,
    ∴,
    ∵,
    ∴,
    设直线BP的解析式为,则

    解得,,
    ∴直线BP的解析式为:,
    当时,,
    ∴点M的坐标为,
    ∴,
    ∵,,
    ∴,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,

    ∴,
    ∵,
    ∴,
    ∴是等腰直角三角形,
    ∴CK=CN,
    ∵,
    ∴,
    ∵,
    ∴,
    在和中,

    ∴(AAS),
    ∴,,
    ∴,
    ∴,
    设直线RN的解析式为:,将点,得,

    解得,,
    ∴直线RN的解析式为:.
    17.(2022绥化)在平面直角坐标系中,已知一次函数与坐标轴分别交于,两点,且与反比例函数的图象在第一象限内交于P,K两点,连接,的面积为.

    (1)求一次函数与反比例函数的解析式;
    (2)当时,求x的取值范围;
    (3)若C为线段上的一个动点,当最小时,求的面积.
    【答案】
    (1)解:∵一次函数与坐标轴分别交于,两点,
    ∴把,代入得,
    ,解得,,
    ∴一次函数解析式为
    过点P作轴于点H,






    ∴,


    ∵在双曲线上,


    (2)解:联立方程组得,
    解得, ,

    根据函数图象可得,反比例函数图象直线上方时,有或,
    ∴当时,求x的取值范围为或,
    (3)解:作点K关于x轴的对称点,连接交x轴于点M,则(1,-2),OM=1,
    连接交x轴于点C,连接KC,则PC+KC的值最小,
    设直线的解析式为
    把代入得,
    解得,
    ∴直线的解析式为
    当时,,解得,,









    18.(2022龙东地区)如图,在平面直角坐标系中,平行四边形ABCD的边AB在x轴上,顶点D在y轴的正半轴上,M为BC的中点,OA、OB的长分别是一元二次方程的两个根,,动点P从点D出发以每秒1个单位长度的速度沿折线向点B运动,到达B点停止.设运动时间为t秒,的面积为S.

    (1)求点C的坐标;
    (2)求S关于t的函数关系式,并写出自变量t的取值范围;
    (3)在点P的运动过程中,是否存在点P,使是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.
    【答案】
    (1)解:,解得,,
    ∵,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∵四边形ABCD是平行四边形,
    ∴,,
    ∴点C坐标为;
    (2)解:当时,,
    当时,过点A作交CB的延长线于点F,如图,

    ∵四边形ABCD是平行四边形,
    ∴,
    ∵,
    ∴,
    ∴,
    ∴,
    ∴;
    (3)解:存在点P,使是等腰三角形,理由如下:
    根据题意得:当点P在CD上运动时,可能是等腰三角形,
    ∵四边形ABCD是平行四边形,
    ∴∠C=∠BAD,BC=AD=5,
    ∴,
    ∵点M为BC的中点,
    ∴,
    当CP=PM时,过点M作MF⊥PC于点F,

    ∴,
    设PC=PM=a,则PD=7-a,,
    ∵PF2+FM2=PM2,
    ∴,解得:,
    ∴,
    ∴此时点P;
    当时,

    ∴,
    ∴此时点P;
    当PM=CM时,过点M作MG⊥PC于点G,则,

    ∴,
    ∴PD=7-PC=4,
    ∴此时点P;
    综上所述,存在点P或或,使是等腰三角形
    19.(2022齐齐哈尔)综合与探究
    如图,某一次函数与二次函数的图象交点为A(-1,0),B(4,5).

    (1)求抛物线的解析式;
    (2)点C为抛物线对称轴上一动点,当AC与BC的和最小时,点C的坐标为 ;
    (3)点D为抛物线位于线段AB下方图象上一动点,过点D作DE⊥x轴,交线段AB于点E,求线段DE长度最大值;
    (4)在(2)条件下,点M为y轴上一点,点F为直线AB上一点,点N为平面直角坐标系内一点,若以点C,M,F,N为顶点的四边形是正方形,请直接写出点N的坐标.
    【答案】
    (1)解:将A(-1,0),B(4,5)代入得, ,
    解这个方程组得,
    抛物线的解析式为:;
    (2)解:如图,设直线AB的解析式为:,
    把点 A(-1,0),B(4,5)代入,
    得,
    解得 ,
    直线AB的解析式为: ,
    由(1)知抛物线的对称轴为,
    点C为抛物线对称轴上一动点,,
    当点C在AB上时,最小,
    把x=1代入,得y=2,
    点C的坐标为(1,2);

    (3)解:如图,由(2)知 直线AB的解析式为y=x+1
    设,则,
    则,
    当时,DE有最大值为,

    (4)解:如图,直线AB的解析式为:y=x+1,
    直线与y轴的交点为D(0,1),


    若以点C,M,F,N为顶点的四边形是正方形,分情况讨论:
    ①过点C作轴于点,则为等腰直角三角形,过点C作 ,则四边形 为正方形,
    依题意,知D与F重合,点 的坐标为(1,1);


    ②以为中心分别作点F,点C点的对称点 ,连接,则四边形是正方形,则点的坐标为(-1,2);


    ③延长到使,作于点,则四边形是正方形,则的坐标为(1,4);


    ④取的中点,的中点,则为正方形,则的坐标为,


    综上所述,点N的坐标为:
    20.(2022绥化)如图,抛物线交y轴于点,并经过点,过点A作轴交抛物线于点B,抛物线的对称轴为直线,D点的坐标为,连接,,.点E从A点出发,以每秒个单位长度的速度沿着射线运动,设点E的运动时间为m秒,过点E作于F,以为对角线作正方形.
      
    (1)求抛物线的解析式;
    (2)当点G随着E点运动到达上时,求此时m的值和点G的坐标;
    (3)在运动的过程中,是否存在以B,G,C和平面内的另一点为顶点的四边形是矩形,如果存在,直接写出点G的坐标,如果不存在,请说明理由.
    【答案】
    (1)将点A(0,-4)、C(6,0)代入解析式中,以及直线对称轴,可得 ,
    解得,
    ∴抛物线的解析式为;
    (2)∵A(0,-4),D,
    ∴△AOD为等腰直角三角形,
    ∵轴交抛物线于点B,
    ∴B(4,-4),
    设直线BC解析式为y=kx+b,
    将B(4,-4),C(6,0)代入解析式得,
    ,解得,
    ∴直线BC解析式为y=2x-12,
    由题意可得,△ADB为等腰直角三角形,
    ∴,
    ∵四边形EGFH正方形,
    ∴△EGF为等腰直角三角形,
    ∴,
    点G随着E点运动到达上时,满足直线BC解析式y=2x-12,
    ∴,
    ∴,此时;
    (3)B(4,-4),C(6,0),,
    ∴,,,
    要使以B,G,C和平面内的另一点为顶点的四边形是矩形,
    需满足:
    当△BGC是直角三角形时,,

    解得,,,
    此时G或(3,-3);
    当△BCG为直角三角形时,,

    解得,,
    此时G;
    当△CBG为直角三角形时,,

    解得,,
    此时G;
    综上所述:点G坐标为或(3,-3)或.
    21.(2022十堰)已知抛物线与轴交于点和点两点,与轴交于点.

    (1)求抛物线的解析式;
    (2)点是抛物线上一动点(不与点,,重合),作轴,垂足为,连接.
    ①如图1,若点在第三象限,且,求点的坐标;
    ②直线交直线于点,当点关于直线的对称点落在轴上时,求四边形的周长.
    【答案】
    (1)解:把点,代入得:
    ,解得:,
    ∴抛物线解析式为;
    (2)解:①如图,过点C作CQ⊥DP于点Q,

    ∵点C(0,-3),
    ∴OC=3,
    ∵,
    ∴△CPQ为等腰直角三角形,
    ∴CQ=PQ,
    设点,则OD=-m,,
    ∵轴,
    ∴∠COD=∠ODQ=∠CQD=90°,
    ∴四边形OCQD为矩形,
    ∴QC=OD=PQ=-m,DQ=OC=3,
    ∴,
    ∴,
    解得:或0(舍去),
    ∴点;
    ②如图,过点E作EM∥x轴于点M,

    令y=0,,
    解得:(舍去),
    ∴点B(-4,0),
    ∴OB=4,
    ∴,
    设直线BC的解析式为,
    把点B(-4,0),C(0,-3)代入得:
    ,解得:,
    ∴直线BC解析式为,
    ∵点关于直线的对称点落在轴上时,
    ∴,,,
    ∵DP⊥x轴,
    ∴PD∥CE′,
    ∴,
    ∴,
    ∴CE=PE,
    ∴,
    ∴四边形为菱形,
    ∵EM∥x轴,
    ∴△CEM∽△CBO,
    ∴,
    设点, 则点,
    当点P在y轴左侧时,EM=-t,
    当-4<t<0时,,
    ∴,
    ∴,
    解得:或0(舍去),
    ∴,
    ∴四边形的周长为;
    当点P在y轴右侧时,EM=-t,
    当t≤-4时,,
    ∴,解得:或0(舍去),
    此时,
    ∴四边形的周长为;
    当点P在y轴右侧,即t>0时,EM=t,,
    ∴,解得:或0,
    不符合题意,舍去;
    综上所述,四边形的周长为或.
    22.(2022鄂州)如图1,在平面直角坐标系中,Rt△OAB的直角边OA在y轴的正半轴上,且OA=6,斜边OB=10,点P为线段AB上一动点.

    (1)请直接写出点B的坐标;
    (2)若动点P满足∠POB=45°,求此时点P的坐标;
    (3)如图2,若点E为线段OB的中点,连接PE,以PE为折痕,在平面内将△APE折叠,点A的对应点为A',当PA'⊥OB时,求此时点P的坐标;
    (4)如图3,若F为线段AO上一点,且AF=2,连接FP,将线段FP绕点F顺时针方向旋转60°得线段FG,连接OG,当OG取最小值时,请直接写出OG的最小值和此时线段FP扫过的面积.
    【答案】
    (1)解:在Rt△OAB中,,
    ∴点B的坐标为(8,6);
    (2)解:连接OP,过点P作PQ⊥OB于点Q,如图,


    ∵∠POB=45°,
    ∴∠OPQ=45°,
    ∴∠POB=∠OPQ,
    ∴PQ=OQ,
    设PQ=OQ=x,则BQ=10-x,
    在Rt△OAB中,,
    在Rt△BPQ中,,
    解得,
    ∴,
    在Rt△POQ中,,
    在Rt△AOP中,,
    ∴点P的坐标为(,6);
    (3)解:令PA'交OB于点D,如图,

    ∵点E为线段OB的中点,
    ∴,,
    ∵,
    设,则,
    ∴,
    ∴,
    由折叠的性质,可得,,
    ∴,
    在Rt△中,,即,
    解得,
    ∵,即,
    ∴,
    ∴,
    ∴,
    ∴点P的坐标为(,6);
    (4)解:以点F为圆心,OF的长为半径画圆,与AB的交点即为点P,再将线段FP绕点F顺时针方向旋转60°得线段FG,连接OG,此时OG最小,如图,


    由题可知,,
    在中,,
    ∴,
    ∵,
    ∴,
    ∴是等边三角形,
    ∴,
    ∴OG的最小值为4,
    ∴线段FP扫过的面积=.
    23.(2022江汉油田、潜江、天门、仙桃)如图,在平面直角坐标系中,已知抛物线的顶点为A,与y轴交于点C,线段轴,交该抛物线于另一点B.

    (1)求点B的坐标及直线的解析式:
    (2)当二次函数的自变量x满足时,此函数的最大值为p,最小值为q,且.求m的值:
    (3)平移抛物线,使其顶点始终在直线上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.
    【答案】
    (1)解:,
    ∴顶点坐标A(1,-4),对称轴x=1,
    当x=0时y=-3,即C(0,-3),
    点B、C关于对称轴x=1对称,则B(2,-3),
    设直线AC:y=kx+b,由A(1,-4),C(0,-3),可得
    ,解得:
    ∴直线AC为:y=-x-3;
    (2)解:①当m+2≤1时,即m≤-1时,
    x=m时取最大值,x=m+2时取最小值,
    ∴,
    解得:,不符合题意;
    ②当m+2>1且m<1,1-m>m+2-1时,即-1<m<0时,
    x=m时取最大值,x=1时取最小值,
    ∴,
    解得:m=,或m=(舍去),
    ③当m+2>1且m<1,1-m<m+2-1时,即0<m<1时,
    x=m+2时取最大值,x=1时取最小值,
    ∴,
    解得:m=,m=(舍去),
    ④当m≥1时,
    x=m+2时取最大值,x=m时取最小值,
    ∴,
    解得:,不符合题意;
    m=0时,二次函数在0≤x≤2上最大值-3,最小值-4,-3-(-4)=1不符合题意;
    综上所述:m=或m=;
    (3)解:由题意作图如下,过点A作直线AE⊥BC于E,作直线AF⊥y轴于F,


    由A(1,-4)、B(2,-3)可得
    直线AB解析式为:y=x-5,
    ∵C(0,-3),
    ∴F(0,-4),E(1,-3),
    ∵AF=1,AE=1,CF=1,CE=1,∠AEC=90°,
    ∴四边形AECF是正方形,
    ∴∠CAE=∠CAF=45°,
    根据对顶角相等,可得当点A沿直线AC平移m长度时,横坐标平移m•cos45°,纵坐标平移m•cos45°,
    即点A沿直线AC平移时,横纵坐标平移距离相等,
    设抛物线向左平移m单位后,与直线AB只有1个交点,则


    令△=0,解得:m=,
    ∴n=1-=,
    由图象可得当抛物线由点A向右平移至左半部分过点B时,与射线BA只有一个交点,
    设抛物线向右平移m单位后,左半部分过点B,则
    B(2,-3)在抛物线上,

    解得:m=0(舍去)或m=3,
    ∴1<n≤4,
    综上所述n=或1<n≤4;
    24.(2022荆州)如图1,在矩形ABCD中,AB=4,AD=3,点O是边AB上一个动点(不与点A重合),连接OD,将△OAD沿OD折叠,得到△OED;再以O为圆心,OA的长为半径作半圆,交射线AB于G,连接AE并延长交射线BC于F,连接EG,设OA=x.

    (1)求证:DE是半圆O的切线;
    (2)当点E落在BD上时,求x的值;
    (3)当点E落在BD下方时,设△AGE与△AFB面积的比值为y,确定y与x之间的函数关系式;
    (4)直接写出:当半圆O与△BCD的边有两个交点时,x的取值范围.
    【答案】
    (1)证明:在矩形ABCD中,,
    △OED是△OAD沿OD折叠得到的,
    ,即,
    DE是半圆O的切线;
    (2)解:△OED是△OAD沿OD折叠得到的,


    在中,,

    在中,,
    ,解得,
    答:x的值为.
    (3)解:在中,,
    △OED是△OAD沿OD折叠得到的,

    是的直径,
    ,即,







    ,即,
    ()

    (4)解:由(2)知,当E在DB上时, ,
    如图,当点E在DC上时, ,

    ∴当时,半圆O与△BCD的边有两个交点;
    当半圆O经过点C时,半圆O与△BCD的边有两个交点,
    连接OC,在中,,

    ,解得,
    ∴当时,半圆O与△BCD的边有两个交点;

    综上所述,当半圆O与△BCD的边有两个交点时,x的取值范围为:或.
    25.(2022随州)如图1,平面直角坐标系xOy中,抛物线与x轴分则点A和点,与y轴交于点C,对称轴为直线,且,P为抛物线上一动点.

    (1)直接写出抛物线的解析式;
    (2)如图2,连接AC,当点P在直线AC上方时,求四边形PABC面积的最大值,并求出此时P点的坐标;
    (3)设M为抛物线对称轴上一动点,当P,M运动时,在坐标轴上是否存在点N,使四边形PMCN为矩形?若存在,直接写出点P及其对应点N的坐标;若不存在,请说明理由.
    【答案】
    (1)解:∵,
    ∴,,
    ∵,对称轴为直线,,
    ∴,解得,
    ∴抛物线的解析式为:.
    (2)解:方法一:连接OP,


    设,易知,,
    ∵,,
    ∴四边形PABC的面积,


    又∵,

    ∴当时,,
    ∴此时P点的坐标为;
    方法二:易知,,故直线AC的方程为


    设,
    ∵过点P作PQ⊥x轴,交AC于点Q,
    ∴,
    ∵点P在AC上方,
    ∴,


    ∴四边形PABC面积,
    ∴当时,S有最大值,
    ∴此时P点的坐标为.
    (3)存在点N.
    ①当N在y轴上时,


    ∵四边形PMCN为矩形,
    此时,,;
    ②当N在x轴负半轴上时,如图所示,四边形PMCN为矩形,过M作y轴的垂线,垂足为D,过P作x轴的垂线,垂足为E,设,则,


    ∴,
    ∵四边形PMCN为矩形,
    ∴,,
    ∵,,
    ∴,
    又∵,
    ∴,
    ∴,
    又∵点M在对称轴上,,
    ∴,
    ∴,即,
    ∵,,
    ∴,
    ∴,
    ∴,,
    ∴,
    ∴P点的坐标为,
    ∵P点在抛物线上,

    解得,(舍),
    ∴,;
    ③当N在x轴正半轴上时,如图所示,四边形PMCN为矩形,过M作y轴的垂线,垂足为D,过P作x轴的垂线,垂足为E,设,则,


    ∴,
    ∵四边形PMCN为矩形时,
    ∴,,
    ∵,,
    ∴,
    又∵,
    ∴,
    ∴,
    又∵点M在对称轴上,,
    ∴,
    ∴,即,
    ∵,,
    ∴,
    ∴,
    ∴,,
    ∴,
    ∴P点的坐标为,
    ∵P点在抛物线上,

    解得(舍),,
    ∴,,
    综上:,;,;,
    26.(2022黄冈、孝感、咸宁)抛物线y=x2-4x与直线y=x交于原点O和点B,与x轴交于另一点A,顶点为D.

    (1)直接写出点B和点D的坐标;
    (2)如图1,连接OD,P为x轴上的动点,当tan∠PDO=时,求点P的坐标;
    (3)如图2,M是点B关于抛物线对称轴的对称点,Q是抛物线上的动点,它的横坐标为m(0<m<5),连接MQ,BQ,MQ与直线OB交于点E.设△BEQ和△BEM的面积分别为S1和S2,求的最大值.
    【答案】
    (1)解:将y=x2-4x与y=x联立得:x=x2-4x,
    解得:x=5或x=0(舍去),
    将x=5代入y=x得y=5,
    故B点坐标为(5,5),
    将函数y=x2-4x转换为顶点式得,故顶点D为(2,-4),
    故B(5,5),D为(2,-4);
    (2)如图所示,过D作DE⊥x轴与点E,

    则E(2,0),则tan∠EDO=,当P在E上时,则满足tan∠PDO=,
    则,
    如图所示,当时,过O作于点G,

    ∵,
    ∴OG=OE=2,DG=DE=4,
    设,则,
    则,
    则或n=0(舍去),
    则,则
    综上所述,;
    (3)解:由题易得:M(-15),,
    则直线MQ的解析式为:,
    令,解得,
    ∴,
    ∵BM=6,
    ∴,
    且,,
    ∴,
    ∵,函数开口向下,
    当时,取最大值为.



    相关试卷

    2022年中考数学真题分类练习之动态问题及真题答案:

    这是一份2022年中考数学真题分类练习之动态问题及真题答案,共44页。

    2023年全国各地中考数学真题分类汇编之动点综合问题(含解析):

    这是一份2023年全国各地中考数学真题分类汇编之动点综合问题(含解析),共57页。

    2022年中考数学真题汇编:最值问题1(含解析):

    这是一份2022年中考数学真题汇编:最值问题1(含解析),共47页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map