中考数学真题分类汇编第一期专题42综合性问题试题含解析
展开
这是一份中考数学真题分类汇编第一期专题42综合性问题试题含解析,共94页。试卷主要包含了选择题等内容,欢迎下载使用。
1.(2018·湖北省孝感·3分)如图,△ABC是等边三角形,△ABD是等腰直角三角形,∠BAD=90°,AE⊥BD于点E,连CD分别交AE,AB于点F,G,过点A作AH⊥CD交BD于点H.则下列结论:①∠ADC=15°;②AF=AG;③AH=DF;④△AFG∽△CBG;⑤AF=(﹣1)EF.其中正确结论的个数为( )
A.5B.4C.3D.2
【分析】①由等边三角形与等腰直角三角形知△CAD是等腰三角形且顶角∠CAD=150°,据此可判断;②求出∠AFP和∠FAG度数,从而得出∠AGF度数,据此可判断;③证△ADF≌△BAH即可判断;④由∠AFG=∠CBG=60°、∠AGF=∠CGB即可得证;⑤设PF=x,则AF=2x、AP==x,设EF=a,由△ADF≌△BAH知BH=AF=2x,根据△ABE是等腰直角三角形之BE=AE=a+2x,据此得出EH=a,证△PAF∽△EAH得=,从而得出a与x的关系即可判断.
【解答】解:∵△ABC为等边三角形,△ABD为等腰直角三角形,
∴∠BAC=60°、∠BAD=90°、AC=AB=AD,∠ADB=∠ABD=45°,
∴△CAD是等腰三角形,且顶角∠CAD=150°,
∴∠ADC=15°,故①正确;
∵AE⊥BD,即∠AED=90°,
∴∠DAE=45°,
∴∠AFG=∠ADC+∠DAE=60°,∠FAG=45°,
∴∠AGF=75°,
由∠AFG≠∠AGF知AF≠AG,故②错误;
记AH与CD的交点为P,
由AH⊥CD且∠AFG=60°知∠FAP=30°,
则∠BAH=∠ADC=15°,
在△ADF和△BAH中,
∵,
∴△ADF≌△BAH(ASA),
∴DF=AH,故③正确;
∵∠AFG=∠CBG=60°,∠AGF=∠CGB,
∴△AFG∽△CBG,故④正确;
在Rt△APF中,设PF=x,则AF=2x、AP==x,
设EF=a,
∵△ADF≌△BAH,
∴BH=AF=2x,
△ABE中,∵∠AEB=90°、∠ABE=45°,
∴BE=AE=AF+EF=a+2x,
∴EH=BE﹣BH=a+2x﹣2x=a,
∵∠APF=∠AEH=90°,∠FAP=∠HAE,
∴△PAF∽△EAH,
∴=,即=,
整理,得:2x2=(﹣1)ax,
由x≠0得2x=(﹣1)a,即AF=(﹣1)EF,故⑤正确;
故选:B.
【点评】本题主要考查相似三角形的判定与性质,解题的关键是掌握等腰三角形与等边三角形的性质、全等三角形与相似三角形的判定与性质等知识点.
2. (2018·山东潍坊·3分)如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是( )
A.B.C.D.
【分析】应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.
【解答】解:当0≤t<2时,S=2t××(4﹣t)=﹣t2+4t;
当2≤t<4时,S=4××(4﹣t)=﹣2t+8;
只有选项D的图形符合.
故选:D.
【点评】本题主要考查了动点问题的函数图象,利用图形的关系求函数的解析式,注意数形结合是解决本题的关键.
3. (2018•安徽•4分) 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为( )
A. B. C. D.
【答案】A
【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1
相关试卷
这是一份2023年全国各地中考数学真题分类汇编之动点综合问题(含解析),共57页。
这是一份2021年中考数学真题复习汇编:专题19矩形菱形正方形(共42题)(第01期)(含解析),共64页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份专题32 函数与几何综合问题- 2023年中考数学真题分类汇编(通用版含解析),文件包含专题32函数与几何综合问题共25题解析版docx、专题32函数与几何综合问题共25题原卷版docx等2份试卷配套教学资源,其中试卷共103页, 欢迎下载使用。