2023届北京新高考复习 专题5 圆锥曲线解答题30题专项提分计划原卷版
展开1.(2022·北京·北大附中校考三模)已知椭圆经过点.
(1)求椭圆的方程及其离心率;
(2)若为椭圆上第一象限的点,直线交轴于点,直线交轴于点,且有,求点的坐标.
2.(2022·北京·北京育才学校校考模拟预测)已知椭圆:()上一点到两个焦点的距离之和为4,离心率为.
(1)求椭圆的方程和短轴长;
(2)已知点,过左焦点且与不垂直坐标轴的直线交椭圆于,,设直线与椭圆的另一个交点为,连接,求证:平分.
3.(2022·北京·人大附中校考模拟预测)已知椭圆的左右焦点分别为.过点的直线与椭圆交于两点,过点作的垂线交椭圆于两点,的周长为.
(1)求椭圆的方程;
(2)求的取值范围.
4.(2022·北京海淀·校考模拟预测)椭圆C:的右顶点为,离心率为
(1)求椭圆C的方程及短轴长;
(2)已知:过定点作直线l交椭圆C于D,E两点,过E作AB的平行线交直线DB于点F,设EF中点为G,直线BG与椭圆的另一点交点为M,若四边形BEMF为平行四边形,求G点坐标.
5.(2022·北京西城·统考一模)已知椭圆C:的离心率为,以椭圆的四个顶点为顶点的四边形周长为.
(1)求椭圆的方程;
(2)直线与椭圆交于、两点,与轴交于点,线段的垂直平分线与交于点,与轴交于点,为坐标原点,如果,求的值.
6.(2022·北京·景山学校校考模拟预测)已知椭圆的离心率为,左、右顶点分别是A,B,且.
(1)求椭圆E的标准方程;
(2)已知M,N是椭圆E上异于A,B的不同两点,若直线AM与直线AN的斜率之积等于-1,判断直线MN是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.
7.(2022·北京东城·统考三模)已知椭圆的左焦点为,长轴长为.过右焦点的直线交椭圆C于两点,直线分别交直线于点.
(1)求椭圆C的方程;
(2)设线段中点为,当点位于轴异侧时,求到直线的距离的取值范围.
8.(2022·北京·北京工业大学附属中学校考三模)已知椭圆,点,分别是椭圆C短轴的端点,椭圆C的焦点F也是抛物线的焦点,且.
(1)求椭圆C的方程:
(2)设过点F且斜率不为0的直线交椭圆C于A,B两点,问x轴上是否存在定点P,使点F到直线BP的距离与点F到直线的距离相等?若存在,求出点P的坐标;若不存在,说明理由.
9.(2022·北京·清华附中校考模拟预测)已知椭圆的焦距为2,一个顶点为A(0,2).
(1)求椭圆E的标准方程及离心率;
(2)过点P(0,3)的直线l斜率为k,交椭圆E于不同的两点B、C,直线AB、AC分别交直线于点M、N.求|的值.
10.(2022·北京通州·潞河中学校考三模)已知椭圆的一个顶点为,离心率为.
(1)求椭圆的方程;
(2)设过椭圆右焦点的直线交椭圆于两点,过原点的直线交椭圆于两点.若,求证:为定值.
11.(2022·北京海淀·统考二模)椭圆的左顶点为,离心率为.
(1)求椭圆的方程;
(2)已知经过点的直线交椭圆于两点,是直线上一点.若四边形为平行四边形,求直线的方程.
12.(2022·北京·校考三模)已知椭圆的离心率为,上下顶点分别为,且.过点的直线与椭圆相交于不同的两点(不与点重合).
(1)求椭圆的方程;
(2)若直线与直线相交于点,求证:三点共线.
13.(2022·北京东城·统考二模)已知椭圆的右顶点为,离心率为.过点与x轴不重合的直线l交椭圆E于不同的两点B,C,直线,分别交直线于点M,N.
(1)求椭圆E的方程;
(2)设O为原点.求证:.
14.(2022·北京延庆·统考模拟预测)已知椭圆的长轴长为,离心率为,其中左顶点为,右顶点为,为坐标原点.
(1)求椭圆的标准方程;
(2)直线与椭圆交于不同的两点,,直线,分别与直线交于点,. 求证:为定值.
15.(2022·北京丰台·统考二模)已知椭圆C:经过点,P到椭圆C的两个焦点的距离和为.
(1)求椭圆C的方程;
(2)设,R为PQ的中点,作PQ的平行线l与椭圆C交于不同的两点A,B,直线AQ与椭圆C交于另一点M,直线BQ与椭圆C交于另一点N,求证:M,N,R三点共线.
16.(2022·北京通州·统考一模)已知椭圆C:的左、右顶点分别为A,B,,离心率为.
(1)求椭圆的方程;
(2)设点D为线段AB上的动点,过D作线段AB的垂线交椭圆C于不同的两点E和F,N为线段AE上一点,.是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.
17.(2022·北京顺义·统考二模)已知椭圆过定点,离心率.
(1)求椭圆的标准方程;
(2)斜率为的直线与椭圆交于两点,为坐标原点,求面积的最大值及此时直线的方程.
18.(2022·北京东城·统考一模)已知椭圆的离心率为,焦距为.
(1)求椭圆的方程;
(2)过点作斜率为的直线与椭圆交于,两点.是否存在常数,使得直线与直线的交点在,之间,且总有?若存在,求出的值;若不存在,说明理由.
19.(2022·北京海淀·统考一模)已知椭圆的下顶点和右顶点都在直线上.
(1)求椭圆方程及其离心率;
(2)不经过点的直线交椭圆于两点,过点作轴的垂线交于点,点关于点的对称点为.若三点共线,求证:直线经过定点.
20.(2022·北京房山·统考一模)已知椭圆C的离心率为,长轴的两个端点分别为,.
(1)求椭圆C的方程;
(2)过点的直线与椭圆C交于M,N(不与A,B重合)两点,直线AM与直线交于点Q,求证:.
21.(2022·北京·北京市第九中学校考模拟预测)已知椭圆:的一个焦点为,且过点.
(1)求椭圆的方程和离心率;
(2)过点且与轴不重合的直线与椭圆交于,两点,与直线交于点,点满足轴,轴,试求直线的斜率与直线的斜率的比值.
22.(2023·北京顺义·统考一模)已知椭圆经过点,离心率为.
(1)求椭圆C的方程;
(2)设直线与椭圆C相交于A,B两点,O为坐标原点.若以为邻边的平行四边形的顶点P在椭圆C上,求证:平行四边形的面积是定值.
23.(2022·北京·北京市第十二中学校考三模)已知椭圆过点,离心率为.
(1)求椭圆M的方程;
(2)已知直线在x轴上方交椭圆M于B,C(异于点A)两个不同的点,直线AB,AC分别与y轴交于点P、Q,O为坐标原点,求的值.
24.(2022·北京海淀·北航实验学校校考模拟预测)已知椭圆C:.
(1)求椭圆C的离心率和长轴长;
(2)已知直线与椭圆C有两个不同的交点A,B,P为x轴上一点.是否存在实数k,使得是以点P为直角顶点的等腰直角三角形?若存在,求出k的值及点P的坐标;若不存在,说明理由.
25.(2022·北京·北京市第一六一中学校考模拟预测)已知椭圆C:(a>b>0)上一点P到两个焦点的距离之和为4,离心率为.
(1)求椭圆C的方程;
(2)设椭圆C的左右顶点分别为A、B,当P不与A、B重合时,直线AP, BP分别交直线x=4于点M、N,证明:以MN为直径的圆过右焦点F .
26.(2022·北京西城·统考二模)已知椭圆:的左顶点为,圆:经过椭圆的上、下顶点.
(1)求椭圆的方程和焦距;
(2)已知,分别是椭圆和圆上的动点(,不在坐标轴上),且直线与轴平行,线段的垂直平分线与轴交于点,圆在点处的切线与轴交于点.求线段长度的最小值.
27.(2022·北京朝阳·统考二模)已知椭圆的一个顶点为,离心率为.
(1)求椭圆的方程;
(2)过点作斜率为的直线交椭圆于另一点,过点作斜率为的直线交椭圆于另一点.若,求证:直线经过定点.
28.(2022·北京·北京市八一中学校考一模)已知椭圆经过点,且离心率.
(1)求椭圆E的方程;
(2)若M,N是椭圆E上异于点P的两点,且以线段为直径的圆恒过点P,判断直线是否过定点?如果是,求此定点坐标.如果不是,请说明理由.
29.(2022·北京·北京八十中校考模拟预测)已知椭圆的短轴长为2,离心率为,下顶点为A,右顶点为B.
(1)求椭圆C的方程;
(2)经过点的直线交椭圆C于P,Q两点(点P在点Q下方),过点P作x轴的垂线交直线AB于点D,交直线BQ于点E,求证:为定值.
30.(2022·北京房山·统考二模)已知椭圆的一个顶点为,一个焦点为.
(1)求椭圆C的方程和离心率;
(2)已知点,过原点O的直线交椭圆C于M,N两点,直线与椭圆C的另一个交点为Q.若的面积等于,求直线的斜率.
2023届北京新高考复习 专题4 导数解答题30题专项提分计划原卷版: 这是一份2023届北京新高考复习 专题4 导数解答题30题专项提分计划原卷版,共5页。试卷主要包含了已知函数,已知,已知函数.,设函数,,设函数.,已知函数,其中,为的导函数.等内容,欢迎下载使用。
2023届北京新高考复习 专题2 立体几何解答题30题专项提分计划原卷版解析版: 这是一份2023届北京新高考复习 专题2 立体几何解答题30题专项提分计划原卷版解析版,共23页。
2023届北京新高考复习 专题2 立体几何解答题30题专项提分计划原卷版: 这是一份2023届北京新高考复习 专题2 立体几何解答题30题专项提分计划原卷版,共12页。