综合解析人教版数学八年级上册期中考模拟试题 卷(Ⅲ)(详解版)
展开考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 35分)
一、单选题(5小题,每小题3分,共计15分)
1、如图,已知图中的两个三角形全等,则∠α的度数是( )
A.72°B.60°C.58°D.50°
2、如图,与交于点,,则的度数为( )
A.B.C.D.
3、不一定在三角形内部的线段是( )
A.三角形的角平分线B.三角形的中线
C.三角形的高D.三角形的高和中线
4、一个缺角的三角形ABC残片如图所示,量得∠A=60°,∠B=75°,则这个三角形残缺前的∠C的度数为( )
A.75°B.60°C.45°D.40°
5、下列说法中正确的是( )
A.三角形的三条中线必交于一点B.直角三角形只有一条高
C.三角形的中线可能在三角形的外部D.三角形的高线都在三角形的内部
二、多选题(5小题,每小题4分,共计20分)
1、下列命题中是假命题的有( )
A.形状相同的两个三角形是全等形;
B.在两个三角形中,相等的角是对应角,相等的边是对应边;
C.全等三角形对应边上的高、中线及对应角平分线分别相等
D.如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;
2、如图,在中,边上的高不是( )
A.B.C.D.
3、在四边形ABCD中,ADBC,若∠DAB的平分线AE交CD于E,连接BE,且BE也平分∠ABC,则以下的命题中正确的是( )
A.BC+AD=ABB.E为CD中点
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
C.∠AEB=90°D.S△ABE=S四边形ABCD
4、如图,在中,,是角平分线,是中线,则下列结论,其中不正确的结论是( )
A.B.C.D.
5、下列作图语句不正确的是( )
A.作射线AB,使AB=aB.作∠AOB=∠a
C.延长直线AB到点C,使AC=BCD.以点O为圆心作弧
第Ⅱ卷(非选择题 65分)
三、填空题(5小题,每小题5分,共计25分)
1、如图,在△ABC中,AD⊥BC于点D,过A作AEBC,且AE=AB,AB上有一点F,连接EF.若EF=AC,CD=4BD,则=_____.
2、如果三角形两条边分别为3和5,则周长L的取值范围是________
3、一个多边形的每一个外角都等于60°,则这个多边形的内角和为_____度.
4、如图所示,过正五边形的顶点作一条射线与其内角的角平分线相交于点,且,则_____度.
5、如图a∥b,∠1+∠2=75°,则∠3+∠4=______________.
四、解答题(5小题,每小题8分,共计40分)
1、如图,在△ABC中,∠ABC、∠ACB的平分线交于点D,延长BD交AC于E,G、F分别在BD、BC上,连接DF、GF,其中∠A=2∠BDF,GD=DE.
(1)当∠A=80°时,求∠EDC的度数;
(2)求证:CF=FG+CE.
2、如图,已知△ABC.
求作:BC边上的高与内角∠B的角平分线的交点.
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
3、如图,在△ABC中,∠A=∠DBC=36°,∠C=72°.求∠1,∠2的度数.
4、如图,△ABC中,∠B=2∠C,AE平分∠BAC.
(1)若AD⊥BC于D,∠C=35°,求∠DAE的大小;
(2)若EF⊥AE交AC于F,求证:∠C=2∠FEC.
5、如图,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为D,E.
(1)求证:△ABD≌△ACE;
(2)若BD=2cm,CE=4cm,求DE的长.
-参考答案-
一、单选题
1、D
【解析】
【分析】
根据∠α是a、c边的夹角,50°的角是a、c边的夹角,然后根据两个三角形全等写出即可.
【详解】
解:∵∠α是a、c边的夹角,50°的角是a、c边的夹角,
又∵两个三角形全等,
∴∠α的度数是50°.
故选:D.
【考点】
本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解答本题的关键.全等三角形的对应角相等,对应边相等.对应边的对角是对应角,对应角的对边是对应边.
2、A
【解析】
【分析】
先根据三角形的内角和定理可求出,再根据平行线的性质即可得.
【详解】
故选:A.
【考点】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了三角形的内角和定理、平行线的性质,熟记平行线的性质是解题关键.
3、C
【解析】
【分析】
根据三角形的高、中线、角平分线的性质解答.
【详解】
解:因为在三角形中,
它的中线、角平分线一定在三角形的内部,
而钝角三角形的两条高在三角形的外部.
故选:C.
【考点】
本题考查了三角形的高、中线、角平分线.熟悉各个性质是解题的关键.
4、C
【解析】
【分析】
利用三角形内角和定理求解即可.
【详解】
因为三角形内角和为180°,且∠A = 60°,∠B = 75°,所以∠C=180°–60°–75°=45°.
【考点】
三角形内角和定理是常考的知识点.
5、A
【解析】
【分析】
根据三角形中线及高线的定义逐一判断即可得答案.
【详解】
A.三角形的三条中线必交于一点,故该选项正确,
B.直角三角形有三条高,故该选项错误,
C.三角形的中线不可能在三角形的外部,故该选项错误,
D.三角形的高线不一定都在三角形的内部,故该选项错误,
故选:A.
【考点】
本题考查三角形的中线及高线,熟练掌握定义是解题关键.
二、多选题
1、ABD
【解析】
【分析】
利用全等形的定义、对应角及对应边的定义,全等三角形的性质分别判断后即可确定正确的选项.
【详解】
解:A、形状相同的两个三角形不一定是全等形,原命题是假命题,符合题意;
B、在两个全等三角形中,相等的角是对应角,相等的边是对应边,原命题是假命题,符合题意;
C、全等三角形对应边上的高、中线及对应角平分线分别相等,正确;原命题是真命题;
D、如果两个三角形都和第三个三角形不全等,那么这两个三角形也可能全等,原命题是假命题,符合题意.
故选:ABD.
【考点】
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.
2、BCD
【解析】
【分析】
根据从三角形顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高,确定出答案即可.
【详解】
解:由图可知,过点A作BC的垂线段即为三角形ABC中BC边的高,则△ABC中BC边上的高是AF.
故BH,CD,EC都不是△ABC,BC边上的高,
故选BCD.
【考点】
本题主要考查了三角形的高线,是基础题,熟记三角形高的定义是解题的关键.
3、ABCD
【解析】
【分析】
在AB上截取AF=AD.证明△AED≌△AEF,△BEC≌△BEF.可证4个结论都正确.
【详解】
解:在AB上截取AF=AD
则△AED≌△AEF(SAS)
∴∠AFE=∠D.
∵ADBC,
∴∠D+∠C=180°.
∴∠C=∠BFE.
∴△BEC≌△BEF(AAS).
∴①BC=BF,故AB=BC+AD;
②CE=EF=ED,即E是CD中点;
③∠AEB=∠AEF+∠BEF=∠DEF+∠CEF=×180°=90°;
④S△AEF=S△AED,S△BEF=S△BEC,
∴S△AEB=S四边形BCEF+S四边形EFAD=S四边形ABCD.
故选ABCD.
【考点】
此题考查全等三角形的判定与性质,运用了截取法构造全等三角形解决问题,难度中等.
4、ACD
【解析】
【分析】
根据三角形中线的定义:在三角形中,连接一个顶点和它所对的边的中点的线段,和角平分线的定义进行逐一判断即可.
【详解】
解:∵AD是角平分线,∠BAC=90°,
∴∠DAB=∠DAC=45°,故B选项不符合题意;
∵AE是中线,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴AE=EC,
∴,故D符合题意;
∵AD不是中线,AE不是角平分线,
∴得不到BD=CD,∠ABE=∠CBE,
∴A和C选项都符合题意,
故选ACD.
【考点】
本题主要考查了三角形中线的定义,角平分线的定义,解题的关键在于能够熟练掌握相关定义.
5、ACD
【解析】
【分析】
根据射线的性质对A进行判断;根据作一个角等于已知角对B进行判断;根据直线的性质对C进行判断;画弧要确定圆心与半径,则可对D进行判断;.
【详解】
解:A、射线是不可度量的,故本选项错误;
B、∠AOB=∠α,故本选项正确;
C、直线向两方无限延伸没有延长线,故本选项错误;
D、需要说明半径的长,故选项错误.
故选:ACD.
【考点】
本题考查了作图-尺规作图的定义:尺规作图是指用没有刻度的直尺和圆规作图,也考查了直线、射线的性质.
三、填空题
1、故答案为:
【考点】
本题主要考查了多边形的内角和定理与外角和定理,熟练掌握定理是解题的关键.
6.
【解析】
【分析】
在CD上取一点G,使GD=BD,连接AG,作EH⊥AB交BA的延长线于点H,先证明△AEH≌△GAD,得EH=AD,AH=GD,再证明Rt△EHF≌Rt△ADC,得FH=CD,于是得AF=GC,则,得S△AEF=S△GAC,设GD=BD=m,则CD=4BD=4m,所以CG=4m-m=3m,BC=4m+m=5m,则,,得,于是得到问题的答案.
【详解】
解:如图,在CD上取一点G,使GD=BD,连接AG,作EH⊥AB交BA的延长线于点H,
∵AD⊥BC于点D,
∴AG=AB,∠H=∠ADG=90°
∴∠AGD=∠B,
∵AE//BC,
∴∠EAH=∠B,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴∠EAH=∠AGD,
∵AE=AB,
∴AE=AG,
在△AEH和△GAD中,
,
∴△AEH≌△GAD(AAS),
∴EH=AD,AH=GD,
在Rt△EHF和Rt△ADC中,
,
∴Rt△EHF≌Rt△ADC(HL),
∴FH=CD,
∴FH-AH=CD-GD,
∴AF=GC,
∴,
∴S△AEF=S△GAC,
设GD=BD=m,则CD=4BD=4m,
∴CG=4m-m=3m,BC=4m+m=5m,
∴,
∴,
故答案为:.
【考点】
此题考查平行线的性质、全等三角形的判定与性质、有关面积比问题的求解等知识与方法,正确地作出所需要的辅助线是解题的关键.
2、10
【分析】
根据三角形的三边关系确定第三边的取值范围,再根据不等式的性质求出答案.
【详解】
设第三边长为x,
∵有两条边分别为3和5,
∴5-3
∴10
此题考查三角形三边关系,不等式的性质,熟记三角形的三边关系确定出第三条边长是解题的关键.
3、720
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
【解析】
【分析】
先根据外角和与外角的度数求出多边形的边数,再根据多边形内角和公式计算即可.
【详解】
∵多边形的每一个外角都为60°,
∴它的边数:,
∴它的内角和:,
故答案为:720.
【考点】
此题考查了多边形内角和与外角和,关键是正确计算多边形的边数.
4、66
【解析】
【分析】
首先根据正五边形的性质得到度,然后根据角平分线的定义得到度,再利用三角形内角和定理得到的度数.
【详解】
解:∵五边形为正五边形,
∴度,
∵是的角平分线,
∴度,
∵,
∴.
故答案为66.
【考点】
本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.
5、105°
【解析】
【分析】
根据平行线的性质和等量代换可以求得∠3+∠4=∠5+∠4,所以根据三角形内角和是180°进行解答即可.
【详解】
如图,
∵a∥b,
∴∠3=∠5,
又∠1+∠2=75°,∠1+∠2+∠4+∠5=180°,
∴∠5+∠4=105°,
∴∠3+∠4=∠5+∠4=105°,
故答案是:105°.
【考点】
本题考查了平行线的性质和三角形内角和定理.解题的技巧性在于把求(∠3+∠4)的值转化为求同一三角形内的(∠5+∠4)的值.
四、解答题
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
1、 (1)
(2)证明见解析
【解析】
【分析】
(1)根据三角形内角和与角平分线定义可得,再根据外角性质即可求出;
(2)在线段上取一点,使,连接,证明,得到,利用全等三角形的性质与外角性质得出,,证明,从而得到,即可证明结论.
(1)
解:在△ABC中,∵∠A=80°,
∴,
∠ABC、∠ACB的平分线交于点D,
,
,
∠EDC=∠DBC+∠DCB
;
(2)
解:在线段上取一点,使,连接,如图所示:
平分,
,
在和中,
,
,
,
,
,
为的一个外角,
,
为的一个外角,
,
平分,
,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∠A=2∠BDF,
在和中,
,
,
,
,
.
【考点】
本题考查三角形综合,涉及到三角形内角和定理的运用、角平分线定义、外角性质求角度、三角形全等的判定与性质等知识点,正确的做辅助线是解决问题的关键.
2、详见解析.
【解析】
【分析】
过点A作BC的垂线,作出∠B的平分线,二者交点即为所求的点.
【详解】
如图:
∴P点即为所求
【考点】
本题考查了尺规作图,熟练掌握垂线和角平分线的作图步骤是解答本题的关键.
3、∠1=36°,∠2=72°.
【解析】
【分析】
在△ABC和△BDC中,根据三角形内角和定理,即可得出结论.
【详解】
在△ABC中,∠ABC=180°﹣∠A﹣∠C=180°-36°-72°=72°,∴∠1=∠ABC﹣∠DBC=72°-36°=36°;
在△BCD中,∠2=180°﹣∠DBC﹣∠C=180°-36°-72°=72°.
【考点】
本题考查了三角形的内角和定理,注意掌握数形结合思想的应用.
4、 (1)17.5°;(2)证明过程见解析
【解析】
【分析】
(1)首先计算出∠B,∠BAC的度数,根据AE是∠BAC的角平分线可得∠EAC=37.5°,再根据Rt△ADC中直角三角形两锐角互余可得∠DAC的度数,进而可得答案;
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
(2)过A作AD⊥BC于D,证明∠DAE=∠FEC,由三角形内角和定理得到∠EAC=90°-∠C,进而可得∠DAE=∠DAC-∠EAC,利用等量代换可得∠DAE=∠C即可求解.
【详解】
解:(1) 解:∵∠C=35°,∠B=2∠C,∴∠B=70°,
∴在△ABC中,由内角和定理可知:∠BAC=180°-∠B-∠C=180°-70°-35°=75°,
∵AE平分∠BAC,∴∠EAC=37.5°,
∵AD⊥BC,∴∠ADC=90°,
在Rt△ADC中,两锐角互余,∴∠DAC=90°-35°=55°,
∴∠DAE=55°-37.5°=17.5°,
故答案为:17.5°;
(2)过A点作AD⊥BC于D点,如下图所示:
∵EF⊥AE,∴∠AEF=90°,
∴∠AED+∠FEC=90°,
∵∠DAE+∠AED=90°,
∴∠DAE=∠FEC,
∵AE平分∠BAC,
∴∠EAC=∠BAC=(180°-∠B-∠C)=(180°-3∠C)=90°-∠C,
∵∠DAE=∠DAC-∠EAC,
∴∠DAE=∠DAC-(90°-∠C)=(90°-∠C)-(90°-∠C)=∠C,
∴∠FEC=∠C,
∴∠C=2∠FEC.
【考点】
此题主要考查了三角形内角和定理,角平分线的定义,直角三角形中两锐角互余等知识点,熟练掌握各图形的性质是解决本题的关键.
5、(1)见解析;(2)DE=6cm.
【解析】
【分析】
(1)根据BD⊥直线m,CE⊥直线m,得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,然后根据“AAS”可判断△ADB≌△CEA;
(2)根据全等三角形的性质得出AE=BD,AD=CE,于是DE=AE+AD=BD+CE.
【详解】
解:(1)∵BD⊥直线m,CE⊥直线m,
∴∠BDA=∠CEA=90°,
∵∠BAC=90°,
∴∠BAD+∠CAE=90°,
∵∠BAD+∠ABD=90°,
∴∠CAE=∠ABD,
∵在△ABD和△CAE中,
,
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
号学级年名姓
· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
∴△ABD≌△CAE(AAS),
(2)∵△ABD≌△CAE,
∴AE=BD,AD=CE,
∴DE=AE+AD=BD+CE,
∵BD=2cm,CE=4cm,
∴DE=6cm;
【考点】
本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;得出∠CAE=∠ABD是解题关键.
综合解析-人教版数学八年级上册期中考模拟试题 卷(Ⅲ)(详解版): 这是一份综合解析-人教版数学八年级上册期中考模拟试题 卷(Ⅲ)(详解版),共21页。试卷主要包含了不一定在三角形内部的线段是等内容,欢迎下载使用。
综合解析人教版数学八年级上册期中考模拟试题 卷(Ⅲ)(含详解): 这是一份综合解析人教版数学八年级上册期中考模拟试题 卷(Ⅲ)(含详解),共22页。
综合解析人教版数学八年级上册期中考试练习试题 卷(Ⅱ)(含详解): 这是一份综合解析人教版数学八年级上册期中考试练习试题 卷(Ⅱ)(含详解),共27页。试卷主要包含了如图,,若,,则的度数为等内容,欢迎下载使用。