年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    模拟测评湖南省中考数学模拟定向训练 B卷(含详解)

    模拟测评湖南省中考数学模拟定向训练 B卷(含详解)第1页
    模拟测评湖南省中考数学模拟定向训练 B卷(含详解)第2页
    模拟测评湖南省中考数学模拟定向训练 B卷(含详解)第3页
    还剩26页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    模拟测评湖南省中考数学模拟定向训练 B卷(含详解)

    展开

    这是一份模拟测评湖南省中考数学模拟定向训练 B卷(含详解),共29页。试卷主要包含了如图,有三块菜地△ACD,下列各式中,不是代数式的是,一元二次方程的根为等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、一副三角板按如图所示的方式摆放,则∠1补角的度数为( )
    A.B.C.D.
    2、有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是( )
    A.|a|>|b|B.a+b<0C.a﹣b<0D.ab>0
    3、如图是由4个相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )
    A.B.C.D.
    4、如图,O是直线AB上一点,则图中互为补角的角共有( )
    A.1对B.2对C.3对D.4对
    5、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
    A.B.C.D.
    6、如图,有三块菜地△ACD、△ABD、△BDE分别种植三种蔬菜,点D为AE与BC的交点,AD平分∠BAC,AD=DE,AB=3AC,菜地△BDE的面积为96,则菜地△ACD的面积是( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.24B.27C.32D.36
    7、下列各式中,不是代数式的是( )
    A.5ab2B.2x+1=7C.0D.4a﹣b
    8、如图,①,②,③,④可以判定的条件有( ).
    A.①②④B.①②③C.②③④D.①②③④
    9、一元二次方程的根为( )
    A.B.C.D.
    10、如图,点F在BC上,BC=EF,AB=AE,∠B=∠E,则下列角中,和2∠C度数相等的角是( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,在中,中线相交于点,如果的面积是4,那么四边形的面积是_________
    2、如图,等边边长为4,点D、E、F分别是AB、BC、AC的中点,分别以D、E、F为圆心,DE长为半径画弧,围成一个曲边三角形,则曲边三角形的周长为______.
    3、如图,直角三角形AOB的直角边OA在数轴上,AB与数轴垂直,点O与数轴原点重合,点A表示的实数是2,BA=2,以点O为圆心,OB的长为半径画弧,与数轴交于点C,则点C对应的数是_____.
    4、《九章算术》是一部与现代数学的主流思想完全吻合的中国数学经典著作.其中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?意思是:有若干人共同购买某种物品,如果每人出8钱,则多3钱;如果每人出7钱,则少4钱,问共有多少人?物品的价格是多少钱?用一元一次方程的知识解答上述问题设共有x人,依题意,可列方程为______.
    5、∠AOB的大小可由量角器测得(如图所示),则∠AOB的补角的大小为_____度.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    三、解答题(5小题,每小题10分,共计50分)
    1、已知:在四边形中,于E,且.
    (1)如图1,求的度数;
    (2)如图2,平分交于F,点G在上,连接,且.求证:;
    (3)如图3,在(2)的条件下,,过点F作,且,若,求线段的长.
    2、如图,在平面直角坐标系中,在第二象限,且,,.
    (1)作出关于轴对称的,并写出,的坐标;
    (2)在轴上求作一点,使得最小,并求出最小值及点坐标.
    3、如图,在平面直角坐标系中,抛物线与轴交于两点与轴交于点C,点M是抛物线的顶点,抛物线的对称轴与BC交于点D,与轴交于点E.
    (1)求抛物线的对称轴及B点的坐标
    (2)如果,求抛物线的表达式;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (3)在(2)的条件下,已知点F是该抛物线对称轴上一点,且在线段的下方,,求点的坐标
    4、请根据学习“一次函数”时积累的经验和方研究函数的图象和性质,并解决问题.

    (1)填空:
    ①当x=0时, ;
    ②当x>0时, ;
    ③当x<0时, ;
    (2)在平面直角坐标系中作出函数的图象;
    (3)观察函数图象,写出关于这个函数的两条结论;
    (4)进一步探究函数图象发现:
    ①函数图象与轴有 个交点,方程有 个解;
    ②方程有 个解;
    ③若关于的方程无解,则的取值范围是 .
    5、如图,△ABC中,∠BAC=90°,点D是BC上的一点,将△ABC沿AD翻折后,点B恰好落在线段CD上的B'处,且AB'平分∠CAD.求∠BAB'的度数.
    -参考答案-
    一、单选题
    1、D
    【分析】
    根据题意得出∠1=15°,再求∠1补角即可.
    【详解】
    由图形可得
    ∴∠1补角的度数为
    故选:D.
    【点睛】
    本题考查利用三角板求度数和补角的定义,熟记各个三角板的角的度数是解题的关键.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    2、C
    【分析】
    先根据数轴上点的位置,判断数a、b的正负和它们绝对值的大小,再根据加减法、乘法法则确定正确选项.
    【详解】
    解:由数轴知:﹣1<a<0<1<b,|a|<|b|,
    ∴选项A不正确;
    a+b>0,选项B不正确;
    ∵a<0,b>0,
    ∴ab<0,选项D不正确;
    ∵a<b,
    ∴a﹣b<0,选项C正确,
    故选:C.
    【点睛】
    本题考查了数轴上点的位置、有理数的加减法、乘法法则.理解加减法法则和乘法的符号法则是解决本题的关键.
    3、A
    【分析】
    根据几何体的三视图,是分别从几何体的正面、左面和上面看物体而得到的图形,对每个选项分别判断、解答.
    【详解】
    解:B是俯视图,C是左视图,D是主视图,
    故四个平面图形中A不是这个几何体的三视图.
    故选:A.
    【点睛】
    本题考查了简单组合体的三视图,掌握几何体的主视图、左视图和俯视图,是分别从几何体的正面、左面和上面看物体而得到的图形是解题的关键.
    4、B
    【分析】
    根据补角定义解答.
    【详解】
    解:互为补角的角有:∠AOC与∠BOC,∠AOD与∠BOD,共2对,
    故选:B.
    【点睛】
    此题考查了补角的定义:和为180度的两个角互为补角,熟记定义是解题的关键.
    5、B
    【分析】
    如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
    【详解】
    解:如图:连接OB,
    ∵是的切线,B为切点
    ∴∠OBA=90°
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    ∴∠COB=90°-42°=48°
    ∴=∠COB=24°.
    故选B.
    【点睛】
    本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
    6、C
    【分析】
    利用三角形的中线平分三角形的面积求得S△ABD=S△BDE=96,利用角平分线的性质得到△ACD与△ABD的高相等,进一步求解即可.
    【详解】
    解:∵AD=DE,S△BDE=96,
    ∴S△ABD=S△BDE=96,
    过点D作DG⊥AC于点G,过点D作DF⊥AB于点F,
    ∵AD平分∠BAC,
    ∴DG=DF,
    ∴△ACD与△ABD的高相等,
    又∵AB=3AC,
    ∴S△ACD=S△ABD=.
    故选:C.
    【点睛】
    本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题.
    7、B
    【分析】
    根据代数式的定义即可判定.
    【详解】
    A. 5ab2是代数式;
    B. 2x+1=7是方程,故错误;
    C. 0是代数式;
    D. 4a﹣b是代数式;
    故选B.
    【点睛】
    此题主要考查代数式的判断,解题的关键是熟知:代数式的定义:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子,叫做代数式.单独的一个数或一个字母也是代数式.
    8、A
    【分析】
    根据平行线的判定定理逐个排查即可.
    【详解】
    解:①由于∠1和∠3是同位角,则①可判定;
    ②由于∠2和∠3是内错角,则②可判定;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;
    ④①由于∠2和∠5是同旁内角,则④可判定;
    即①②④可判定.
    故选A.
    【点睛】
    本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.
    9、C
    【分析】
    先移项,把方程化为 再利用直接开平方的方法解方程即可.
    【详解】
    解:,


    故选C
    【点睛】
    本题考查的是一元二次方程的解法,掌握“利用直接开平方的方法解一元二次方程”是解本题的关键.
    10、D
    【分析】
    根据SAS证明△AEF≌△ABC,由全等三角形的性质和等腰三角形的性质即可求解.
    【详解】
    解:在△AEF和△ABC中,

    ∴△AEF≌△ABC(SAS),
    ∴AF=AC,∠AFE=∠C,
    ∴∠C=∠AFC,
    ∴∠EFC=∠AFE+∠AFC=2∠C.
    故选:D.
    【点睛】
    本题主要考查了全等三角形的判定与性质,等腰三角形的判定和性质,熟练掌握全等三角形的判定与性质是解决问题的关键.
    二、填空题
    1、8
    【解析】
    【分析】
    如图所示,连接DE,先推出DE是△ABC的中位线,得到,DE∥AB,即可证明△ABO∽△DEO,△CDE∽△CBA,得到,从而推出,即可得到,再由,即可得到,由,得到,则.
    【详解】
    解:如图所示,连接DE,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵AD,BE分别是BC,AC边上的中线,
    ∴D、E分别是BC、AC的中点,
    ∴DE是△ABC的中位线,
    ∴,DE∥AB,
    ∴△ABO∽△DEO,△CDE∽△CBA,
    ∴,
    ∴,
    ∴,
    ∴,

    ∵,
    ∴,
    ∵,
    ∴,
    ∴,
    故答案为:8.
    【点睛】
    本题主要考查了相似三角形的性质与判定,三角形中位线定理,熟知相似三角形的性质与判定条件是解题的关键.
    2、
    【解析】
    【分析】
    证明△DEF是等边三角形,求出圆心角的度数,利用弧长公式计算即可.
    【详解】
    解:连接EF、DF、DE,
    ∵等边边长为4,点D、E、F分别是AB、BC、AC的中点,
    ∴是等边三角形,边长为2,
    ∴∠EDF=60°,
    弧EF的长度为,同理可求弧DF、DE的长度为,
    则曲边三角形的周长为;
    故答案为:.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    本题考查了等边三角形的性质与判定和弧长计算,中位线的性质,解题关键是熟记弧长公式,正确求出圆心角和半径.
    3、
    【解析】
    【分析】
    先利用勾股定理求出,再根据作图过程可得,然后根据实数与数轴的关系即可得.
    【详解】
    解:由题意得:,

    由作图过程可知,,
    由数轴的性质可知,点对应的数大于0,
    则在数轴上,点对应的数是,
    故答案为:.
    【点睛】
    本题考查了勾股定理、实数与数轴,掌握理解勾股定理是解题关键.
    4、8x-3=7x+4
    【解析】
    【分析】
    根据物品的价格相等列方程.
    【详解】
    解:设共有x人,依题意,可列方程为8x-3=7x+4,
    故答案为:8x-3=7x+4.
    【点睛】
    此题考查了古代问题的一元一次方程,正确理解题意是解题的关键.
    5、140
    【解析】
    【分析】
    先根据图形得出∠AOB=40°,再根据和为180度的两个角互为补角即可求解.
    【详解】
    解:由题意,可得∠AOB=40°,
    则∠AOB的补角的大小为:180°−∠AOB=140°.
    故答案为:140.
    【点睛】
    本题考查补角的定义:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.熟记定义是解题的关键.
    三、解答题
    1、
    (1)120°;
    (2)见解析;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (3)3.
    【分析】
    (1)取AD的中点F,连接EF,证明△AEF是等边三角形,进而求得∠B;
    (2)作FM⊥BC于M,FN⊥AB于点N,先证明Rt△BFM≌Rt△BFN,再证明Rt△FMG≌Rt△FNA;
    (3)连接AG,DF,DG,作FM⊥BC于M,先证明AF=GF=DF,从而得出∠AGH=∠AFD=30°,进而得出∠DGC=∠DFC=120°,从而得出点G、C、D、F共圆,进而得出CA平分∠BCD,接着可证Rt△FMG≌Rt△FHD,△MCF≌△HCF,进而求得GM=CG=DH=,从而得出BM的值,进而求得BF.
    (1)
    解:如图1,取AD的中点F,连接EF,
    ∵DE⊥AC,
    ∴∠AED=90°,
    ∴AD=2AF=2EF,
    ∵AD=2AE,
    ∴AE=EF=AF,
    ∴∠CAD=60°,
    ∵∠B+∠CAD=180°,
    ∴∠B=120°;
    (2)
    证明:如图2,作FM⊥BC于M,FN⊥AB于点N,
    ∴∠BMF=∠BNF=90°,∠GMF=∠ANF=90°,
    ∵BF平分∠ABC,
    ∴FM=FN,
    在Rt△BFM和Rt△BFN中,

    ∴Rt△BFM≌Rt△BFN(HL),
    ∴BM=BN,
    在Rt△FMG和Rt△FNA中,

    ∴Rt△FMG≌Rt△FNA(HL),
    ∴MG=NA,
    ∴BN+NA=BM+MG,
    ∴AB=BG.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (3)
    如图3,
    连接AG,DF,DG,作FM⊥BC于M,延长GF交AD于N,
    ∵AF=AD,∠DAE=60°,
    ∴△ADF是等边三角形,
    ∴∠AFD=60°,AF=DF,
    ∵GF=AF,∠DFC=180°-∠AFD=120°,
    ∴AF=GF=DF,
    ∴∠FGD=∠FDG,∠FAG=∠FGA,
    ∴∠AGD=∠AFN+∠DFN=∠AFD=×60°=30°,
    ∵∠ADC=120°,AD=DG,
    ∴∠DGA=∠DAG==30°,
    ∴∠DGC=180°-∠DGA-∠AGD=180°-30°-30°=120°,
    ∴∠DGC=∠DFC,
    ∵∠1=∠2,
    ∴180°-∠DGC-∠1=180°-∠DFC-∠2,
    ∴∠GCF=∠FDG,∠DCF=∠FGD,
    ∴∠GCF=∠DCF,
    ∵FH⊥CD,
    ∴FM=FH,
    ∵∠FMG=∠FHD=90°,
    ∴Rt△FMG≌Rt△FHD(HL),
    ∴DH=MG,
    同理可得:△MCF≌△HCF(HL),
    ∴CM=CH=2CG,
    ∴GM=CG=DH,
    ∴3CG=CD=,
    ∴GM=CG=,
    ∴BM=BG-GM=AB-GM=5-=,
    在Rt△BFM中,∠BFM=90°-∠FBM=90°-60°=30°,
    ∴BF=2BM=3.
    【点睛】
    本题考查了等边三角形的判定和性质,全等三角形的判定和性质,角平分线的性质等知识,解决问题的关键是正确作出辅助线.
    2、
    (1)见解析,,
    (2)见解析,,
    【分析】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (1)由题意依据作轴对称图形的方法作出关于轴对称的,进而即可得出,的坐标;
    (2)根据题意作关于轴的对称点,连接两点与轴的交点即为点,进而设直线的解析式为并结合勾股定理进行求解.
    (1)
    解:如图所示,即为所求.,
    (2)
    解:如图点即为所求.点关于轴对称点.
    设直线的解析式为.
    将,代入得
    ,,
    ∴直线
    当时,.,,
    最小.
    【点睛】
    本题考查画轴对称图形以及勾股定理,熟练掌握并利用轴对称的性质解决线段和的最小值是解题的关键.
    3、
    (1)对称轴是,B(4,0)
    (2)y=
    (3)F( ,-5)
    【分析】
    (1)根据二次函数抛物线的性质,可求出对称轴,即可得B点的坐标;
    (2)二次函数的y轴平行于对称轴,根据平行线分线段成比例用含a的代数式表示DE的长,MD= ,可表示M的纵坐标,然后把M的横坐标代入y=ax2−3ax−4a,可得到关于a的方程,求出a的值,即可得答案;
    (3)先证△AOC∽△COB,得∠BCO=∠CAO,再求出∠CAO=∠CFB,得△AGC∽△FGB,根据相似三角形对于高的比等于相似比,可得答案.
    (1)
    解:∵二次函数y=ax2−3ax−4a,
    ∴对称轴是 ,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵A(−1,0),
    ∵1+1.5=2.5,
    ∴1.5+2.5=4,
    ∴B(4,0);
    (2)
    ∵二次函数y=ax2−3ax−4a,C在y轴上,
    ∴C的横坐标是0,纵坐标是−4a,
    ∵y轴平行于对称轴,
    ∴ ,
    ∴,
    ∵ ,
    ∵MD=,
    ∵M的纵坐标是+
    ∵M的横坐标是对称轴x,
    ∴ ,
    ∴+=,
    解这个方程组得: ,
    ∴y=ax2−3ax−4a= x2-3×()x-4×()=;
    (3)
    假设F点在如图所示的位置上,连接AC、CF、BF,CF与AB相交于点G,
    由(2)可知:AO=1,CO=2,BO=4,
    ∴ ,
    ∴,
    ∵∠AOC=∠COB=90°,
    ∴△AOC∽△COB,
    ∴∠BCO=∠CAO,
    ∵∠CFB=∠BCO,
    ∴∠CAO=∠CFB,
    ∵∠AGC=∠FGB,
    ∴△AGC∽△FGB,
    ∴ ,
    设EF=x,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∵BF2=BE2+EF2= ,AC2=22+12=5,CO2=22=4,
    ∴= ,
    解这个方程组得:x1=5,x2=-5,
    ∵点F在线段BC的下方,
    ∴x1=5(舍去),
    ∴F(,-5).
    【点睛】
    本题考查了二次函数的性质、平行线分线段成比例、一元一次方程的解法、一元二次方程方程的解法、相似三角形的判定与性质,做题的关键是相似三角形的判定与性质的灵活运用.
    4、(1)2;-x+2,x+2;(2)见解析;(3)函数图象关于y轴对称;当x=0时,y有最大值2;(4)①2 2;②1;③.
    【分析】
    (1)利用绝对值的意义,分别代入计算,即可得到答案;
    (2)结合(1)的结论,画出分段函数的图像即可;
    (3)结合函数图像,归纳出函数的性质即可;
    (4)结合函数图像,分别进行计算,即可得到答案;
    【详解】
    解:(1)①当x=0时,;
    ②当x>0时,;
    ③当x<0时,;
    故答案为:2;x+2;x+2;
    (2)函数y=|x|+2的图象,如图所示:
    (3)函数图象关于y轴对称;
    当x=0时,y有最大值2.(答案不唯一)
    (4)①函数图象与轴有2个交点,方程有2个解;
    ②方程有1个解;
    ③若关于的方程无解,则的取值范围是.
    故答案为:2;2;1;.
    【点睛】
    本题考查了一次函数的图像和性质,绝对值的意义,解题的关键是熟练掌握题意,正确的画出图像.
    5、60°
    【分析】
    由折叠和角平分线可求∠BAD=30°,即可求出∠BAB'的度数.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【详解】
    解:由折叠可知,∠BAD=∠B'AD,
    ∵AB'平分∠CAD.
    ∴∠B'AC=∠B'AD,
    ∴∠BAD=∠B'AC=∠B'AD,
    ∵∠BAC=90°,
    ∴∠BAD=∠B'AC=∠B'AD=30°,
    ∴∠BAB'=60°.
    【点睛】
    本题考查了折叠和角平分线,解题关键是掌握折叠角相等和角平分线的性质.

    相关试卷

    【中考特训】广西省桂林市中考数学模拟定向训练 B卷(含详解):

    这是一份【中考特训】广西省桂林市中考数学模拟定向训练 B卷(含详解),共30页。试卷主要包含了下列图形是全等图形的是等内容,欢迎下载使用。

    【中考专题】湖南省衡阳市中考数学模拟定向训练 B卷(含答案详解):

    这是一份【中考专题】湖南省衡阳市中考数学模拟定向训练 B卷(含答案详解),共24页。试卷主要包含了单项式的次数是,下列各式中,不是代数式的是等内容,欢迎下载使用。

    备考练习湖南省中考数学模拟定向训练 B卷(含答案详解):

    这是一份备考练习湖南省中考数学模拟定向训练 B卷(含答案详解),共26页。试卷主要包含了如图,A等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map