所属成套资源:中考数学二轮复习(知识精讲+真题过关练习)(2份打包,原卷版+解析版)
- 中考数学二轮复习冲刺第12讲 勾股定理及其逆定理(知识精讲+真题练+模拟练+自招练)(2份打包,原卷版+解析版) 试卷 0 次下载
- 中考数学二轮复习冲刺第13讲 多边形与平行四边形(知识精讲+真题练+模拟练+自招练)(2份打包,原卷版+解析版) 试卷 0 次下载
- 中考数学二轮复习冲刺第15讲 圆的有关概念、性质与圆有关的位置关系(知识精讲+真题练+模拟练+自招练)(2份打包,原卷版+解析版) 试卷 0 次下载
- 中考数学二轮复习冲刺第16讲正多边形与圆(知识精讲+真题练+模拟练+自招练)(2份打包,原卷版+解析版) 试卷 0 次下载
- 中考数学二轮复习冲刺第17讲 图形的相似(知识精讲+真题练+模拟练+自招练)(2份打包,原卷版+解析版) 试卷 0 次下载
中考数学二轮复习冲刺第14讲 特殊的四边形(知识精讲+真题练+模拟练+自招练)(2份打包,原卷版+解析版)
展开这是一份中考数学二轮复习冲刺第14讲 特殊的四边形(知识精讲+真题练+模拟练+自招练)(2份打包,原卷版+解析版),文件包含中考数学二轮复习冲刺第14讲特殊的四边形知识精讲+真题练+模拟练+自招练原卷版doc、中考数学二轮复习冲刺第14讲特殊的四边形知识精讲+真题练+模拟练+自招练解析版doc等2份试卷配套教学资源,其中试卷共106页, 欢迎下载使用。
1. 会识别矩形、菱形、正方形以及梯形;
2.掌握矩形、菱形、正方形的概念、判定和性质,会用矩形、菱形、正方形的性质和判定解决问题.
3.掌握梯形的概念以及了解等腰梯形、直角梯形的性质和判定,会用性质和判定解决实际问题
【知识导图】
【考点梳理】
考点一、几种特殊四边形性质、判定
考点二、中点四边形相关问题
中点四边形的概念:把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.
若中点四边形为矩形,则原四边形满足条件对角线互相垂直;
若中点四边形为菱形,则原四边形满足条件对角线相等;
若中点四边形为正方形,则原四边形满足条件对角线互相垂直且相等.
考点三、重心
1.线段的中点是线段的重心;
三角形三条中线相交于一点,这个交点叫做三角形的重心;三角形的重心与顶点的距离等于它与对边中点的距离的2倍.
平行四边形对角线的交点是平行四边形的重心。
【典型例题】
题型一、特殊的平行四边形的应用
例1.如图,设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF、再以对角线AE为边作笫三个正方形AEGH,如此下去….若正方形ABCD的边长记为a1,按上述方法所作的正方形的边长依次为a2,a3,a4,…,an,则an=___________.
【变式】长为1,宽为a的矩形纸片(),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a的值为________.
第一次操作
第二次操作
例2.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=6,BD=8,点P是AC延长线上的一个动点,过点P作PE⊥AD,垂足为E,作CD延长线的垂线,垂足为E,则|PE﹣PF|= .
题型二、梯形的应用
例3.如图,在梯形ABCD中,已知AD∥BC,∠B=90°,AB=7,AD=9,BC=12,在线段BC上任取一点E,连接DE,作EF⊥DE,交直线AB于点F.
(1)若点F与B重合,求CE的长;
(2)若点F在线段AB上,且AF=CE,求CE的长;
(3)设CE=x,BF=y,写出y关于x的函数关系式(直接写出结果可).
【变式】如图为菱形ABCD与正方形EFGH的重迭情形,其中E在CD上,AD与GH相交于I点,且AD∥HE.若∠A=60°,且AB=7,DE=4,HE=5,则梯形HEDI的面积为( ).
A. B. C.10- D.10+
题型三、特殊四边形与其他知识结合的综合运用
例4.正方形ABCD边长为2,点E在对角线AC上,连接DE,将线段DE绕点D顺时针旋转90°至DF的位置,连接AF,EF.
(1)证明:AC⊥AF;
(2)设AD2=AE×AC,求证:四边形AEDF是正方形;
(3)当E点运动到什么位置时,四边形AEDF的周长有最小值,最小值是多少?
例5.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.
(1)证明不论E、F在BC、CD上如何滑动,总有BE=CF;
(2)当点E、F在BC、CD上滑动时,分别探讨四边形AECF和△CEF的面积是否发生变化?如果不变,求出这个定值;如果变化,求出最大(或最小)值.
例6.如图,正方形ABCD的边AD与矩形EFGH的边FG重合,将正方形ABCD以1cm/s的速度沿FG方向移动,移动开始前点A与点F重合,在移动过程中,边AD始终与边FG重合,连接CG,过点A作CG的平行线交线段GH于点P,连接PD.已知正方形ABCD的边长为1cm,矩形EFGH的边FG,GH的长分别为4cm,3cm,设正方形移动时间为x(s),线段GP的长为y(cm),其中0≤x≤2.5.
(1)试求出y关于x的函数关系式,并求当y=3时相应x的值;
(2)记△DGP的面积为S1,△CDG的面积为S2.试说明S1-S2是常数;
(3)当线段PD所在直线与正方形ABCD的对角线AC垂直时,求线段PD的长.
【变式】如图,E是矩形ABCD边BC的中点,P是AD边上一动点,PF⊥AE,PH⊥DE,垂足分别为F,H.
(1)当矩形ABCD的长与宽满足什么条件时,四边形PHEF是矩形?请予以证明;
(2)在(1)中,动点P运动到什么位置时,矩形PHEF变为正方形?为什么?
【中考过关真题练】
一.选择题(共6小题)
1.(2022•鄂尔多斯)如图,菱形ABCD中,AB=2,∠ABC=60°,矩形BEFG的边EF经过点C,且点G在边AD上,若BG=4,则BE的长为( )
A.B.C.D.3
2.(2022•广州)如图,正方形ABCD的面积为3,点E在边CD上,且CE=1,∠ABE的平分线交AD于点F,点M,N分别是BE,BF的中点,则MN的长为( )
A.B.C.2﹣D.
3.(2022•绍兴)如图,在平行四边形ABCD中,AD=2AB=2,∠ABC=60°,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD,边BC上的动点.下列四种说法:
①存在无数个平行四边形MENF;
②存在无数个矩形MENF;
③存在无数个菱形MENF;
④存在无数个正方形MENF.
其中正确的个数是( )
A.1B.2C.3D.4
4.(2022•随州)七巧板是一种古老的中国传统智力玩具,如图,在正方形纸板ABCD中,BD为对角线,E,F分别为BC,CD的中点,AP⊥EF分别交BD,EF于O,P两点,M,N分别为BO,DO的中点,连接MP,NF,沿图中实线剪开即可得到一副七巧板.则在剪开之前,关于该图形,下列说法正确的有( )
①图中的三角形都是等腰直角三角形;
②四边形MPEB是菱形;
③四边形PFDM的面积占正方形ABCD面积的.
A.只有①B.①②C.①③D.②③
5.(2022•湘西州)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,OH=4,若菱形ABCD的面积为32,则CD的长为( )
A.4B.4C.8D.8
6.(2022•绵阳)如图,E、F、G、H分别是矩形的边AB、BC、CD、AD上的点,AH=CF,AE=CG,∠EHF=60°,∠GHF=45°,若AH=2,AD=5+,则四边形EFGH的周长为( )
A.4(2+)B.4(+1)C.8(+)D.4(++2)
二.填空题(共9小题)
7.(2022•青海)如图,矩形ABCD的对角线相交于点O,过点O的直线交AD,BC于点E,F,若AB=3,BC=4,则图中阴影部分的面积为 .
8.(2022•辽宁)如图,CD是△ABC的角平分线,过点D分别作AC,BC的平行线,交BC于点E,交AC于点F.若∠ACB=60°,CD=4,则四边形CEDF的周长是 .
9.(2022•西宁)矩形ABCD中,AB=8,AD=7,点E在AB边上,AE=5.若点P是矩形ABCD边上一点,且与点A,E构成以AE为腰的等腰三角形,则等腰三角形AEP的底边长是 .
10.(2022•攀枝花)如图,以△ABC的三边为边在BC上方分别作等边△ACD、△ABE、△BCF.且点A在△BCF内部.给出以下结论:①四边形ADFE是平行四边形;②当∠BAC=150°时,四边形ADFE是矩形;③当AB=AC时,四边形ADFE是菱形;④当AB=AC,且∠BAC=150°时,四边形ADFE是正方形.其中正确结论有 (填上所有正确结论的序号).
11.(2022•营口)如图,将△ABC沿着BC方向平移得到△DEF,只需添加一个条件即可证明四边形ABED是菱形,这个条件可以是 .(写出一个即可)
12.(2022•吉林)如图,在矩形ABCD中,对角线AC,BD相交于点O,点E是边AD的中点,点F在对角线AC上,且AF=AC,连接EF.若AC=10,则EF= .
13.(2022•甘肃)如图,在四边形ABCD中,AB∥DC,AD∥BC,在不添加任何辅助线的前提下,要想四边形ABCD成为一个矩形,只需添加的一个条件是 .
14.(2022•海南)如图,正方形ABCD中,点E、F分别在边BC、CD上,AE=AF,∠EAF=30°,则∠AEB= °;若△AEF的面积等于1,则AB的值是 .
15.(2022•黔东南州)如图,折叠边长为4cm的正方形纸片ABCD,折痕是DM,点C落在点E处,分别延长ME、DE交AB于点F、G,若点M是BC边的中点,则FG= cm.
三.解答题(共10小题)
16.(2022•云南)如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°.
(1)求证:四边形ABDF是矩形;
(2)若AD=5,DF=3,求四边形ABCF的面积S.
17.(2022•聊城)如图,△ABC中,点D是AB上一点,点E是AC的中点,过点C作CF∥AB,交DE的延长线于点F.
(1)求证:AD=CF;
(2)连接AF,CD.如果点D是AB的中点,那么当AC与BC满足什么条件时,四边形ADCF是菱形,证明你的结论.
18.(2022•广元)如图,在四边形ABCD中,AB∥CD,AC平分∠DAB,AB=2CD,E为AB中点,连结CE.
(1)求证:四边形AECD为菱形;
(2)若∠D=120°,DC=2,求△ABC的面积.
19.(2022•湖州)如图,已知在Rt△ABC中,∠C=Rt∠,D是AB边上一点,以BD为直径的半圆O与边AC相切,切点为E,过点O作OF⊥BC,垂足为F.
(1)求证:OF=EC;
(2)若∠A=30°,BD=2,求AD的长.
20.(2022•邵阳)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD上,且BE=DF,OE=OA.
求证:四边形AECF是正方形.
21.(2022•凉山州)在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交CE的延长线于点F.
(1)求证:四边形ADBF是菱形;
(2)若AB=8,菱形ADBF的面积为40.求AC的长.
22.(2022•巴中)如图,▱ABCD中,E为BC边的中点,连接AE并延长交DC的延长线于点F,延长EC至点G,使CG=CE,连接DG、DE、FG.
(1)求证:△ABE≌△FCE;
(2)若AD=2AB,求证:四边形DEFG是矩形.
23.(2022•六盘水)如图,在平行四边形ABCD中,AE平分∠BAC,CF平分∠ACD.
(1)求证:△ABE≌△CDF;
(2)当△ABC满足什么条件时,四边形AECF是矩形?请写出证明过程.
24.(2022•泰州)如图,线段DE与AF分别为△ABC的中位线与中线.
(1)求证:AF与DE互相平分;
(2)当线段AF与BC满足怎样的数量关系时,四边形ADFE为矩形?请说明理由.
25.(2022•德阳)如图,在菱形ABCD中,∠ABC=60°,AB=2cm,过点D作BC的垂线,交BC的延长线于点H.点F从点B出发沿BD方向以2cm/s向点D匀速运动,同时,点E从点H出发沿HD方向以1cm/s向点D匀速运动.设点E,F的运动时间为t(单位:s),且0<t<3,过F作FG⊥BC于点G,连结EF.
(1)求证:四边形EFGH是矩形;
(2)连结FC,EC,点F,E在运动过程中,△BFC与△DCE是否能够全等?若能,求出此时t的值;若不能,请说明理由.
【中考挑战满分模拟练】
一.选择题(共8小题)
1.(2023•莲湖区一模)如图,平行四边形ABCD中,对角线AC、BD相交于点O,则下列结论中不正确的是( )
A.当AB=BC时,它是菱形
B.当AC⊥BD时,它是菱形
C.当AC=BD时,它是矩形
D.当AC垂直平分BD时,它是正方形
2.(2023•三江县校级一模)如图,∠BDE=90°,正方形BEGC和正方形AFED的面积分别是289和225,则以BD为直径的半圆的面积是( )
A.16πB.8πC.4πD.2π
3.(2023•未央区校级三模)如图,菱形ABCD的对角线AC,BD的长分别为6和8,则这个菱形的面积是( )
A.48B.40C.24D.20
4.(2023•汉阳区校级一模)如图,菱形ABCD的边长为4,∠BAD=60°,过点B作BE⊥AB交CD于点E,连接AE,F为AE的中点,H为BE的中点,连接FH和CF,CF交BE于点G,则GF的长为( )
A.3B.C.2D.
5.(2023•碑林区校级模拟)如图,四边形ABCD的两条对角线相交于点O,且互相平分.添加下列条件,仍不能判定四边形ABCD为菱形的是( )
A.AC⊥BDB.AB=ADC.AC=BDD.∠ABD=∠CBD
6.(2023•碑林区校级一模)四边形不具有稳定性.四条边长都确定的四边形,当内角的大小发生变化时,其形状也随之改变.如图,改变正方形ABCD的内角,使正方形ABCD变为菱形ABC′D′,如果∠DAD′=30°,那么菱形ABC′D′与正方形ABCD的面积之比是( )
A.B.C.D.1
7.(2023•深圳模拟)如图,在矩形ABCD中,对角线AC与BD相交于点O,已知∠ACB=25°,则∠AOB的大小是( )
A.130°B.65°C.50°D.25°
8.(2023•孟村县校级一模)在下列条件中,能够判定▱ABCD为矩形的是( )
A.AB=ACB.AC⊥BDC.AB=ADD.AC=BD
二.填空题(共8小题)
9.(2023•福安市一模)如图平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OB,∠OAD=65°.则∠ODC= .
10.(2023•雁塔区校级一模)如图,在菱形ABCD中,对角线AC、BD相交于点O,点E在线段BO上,连接AE,若CD=3BE,∠DAE=∠DEA,EO=1,则线段AE的长为 .
11.(2023•定远县校级一模)七巧板是中国古代劳动人民发明的一种传统智力玩具,它由五块等腰直角三角形、一块正方形和一块平行四边形共七块板组成.(清)陆以活《冷庐杂识》卷中写道:近又有七巧图,其式五,其数七,其变化之式多至千余,体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之.如图是一个用七巧板拼成装饰图,放入长方形ABCD内,装饰图中的三角形顶点E,F分别在边AB,BC上,三角形①的边GD在AD上,则= .
12.(2023•莲湖区一模)如图,在菱形ABCD中,对角线交于O,且对角线AC=12,tan∠OCD=,点E是边AB的中点,则OE= .
13.(2023•秦都区校级模拟)如图所示,四边形ABCD中,AC⊥BD于点O,AO=CO=4,BO=DO=3,点P为线段AC上的一个动点.过点P分别作PM⊥AD于点M,作PN⊥DC于点N.连接PB,在点P运动过程中,PM+PN+PB的最小值等于 .
14.(2023•崂山区一模)如图,在矩形ABCD中,连接BD,过点C作∠DBC平分线BE的垂线,垂足为点E,且交BD于点F;过点C作∠BDC平分线DH的垂线,垂足为点H,且交BD于点G,连接HE,若BC=2,CD=,则线段HE的长度为 .
15.(2023•雁塔区校级模拟)如图,已知边长为2的正方形ABCD外有一个点E,过点E作直线BC的垂线,垂足为F,连接AE.若,则AE的最小值是 .
16.(2023•榆林一模)如图,在矩形ABCD中,AB=4,AD=6,点E、F分别在边AB、CD上,点M为线段EF上一动点,过点M作EF的垂线分别交边AD、BC于点G、点H.若线段EF恰好平分矩形ABCD的面积,且DF=1,则GH的长为 .
三.解答题(共9小题)
17.(2023•雁塔区校级模拟)如图,矩形ABCD的对角线AC,BD交于点O,点E,F分别是OB,OC上的点,且OE=OF,连接AE,DF.
求证:∠EAD=∠FDA.
18.(2023•碑林区校级模拟)如图,点P为菱形ABCD对角线BD上一点,点E在边AD上,连接PA、PC、PE,且∠AEP=∠DCP.求证:PC=PE.
19.(2023•雁塔区校级二模)如图,在菱形ABCD中,过点D分别作DE⊥AB于点E,作DF⊥BC于点F.求证:AE=CF.
20.(2023•深圳模拟)如图,已知△ABC中,D是BC边上一点,过点D分别作DE∥AC交AB于点E,作DF∥AB交AC于点F,连接AD.
(1)下列条件:
①D是BC边的中点;
②AD是△ABC的角平分线;
③点E与点F关于直线AD对称.
请从中选择一个能证明四边形AEDF是菱形的条件,并写出证明过程;
(2)若四边形AEDF是菱形,且AE=2,CF=1,求BE的长.
21.(2023•黔江区一模)如图,在▱ABCD中,对角线AC,BD交于点O,E是AD上一点,连接EO并延长,交BC于点F.连接AF,CE,EF平分∠AEC.
(1)求证:四边形AFCE是菱形;
(2)若∠DAC=60°,AC=2,求四边形AFCE的面积.
22.(2023•市南区一模)已知:如图,在矩形ABCD中,E是边BC上一点,过点E作对角线AC的平行线,交AB于F,交DA和DC的延长线于点G,H.
(1)求证:△AFG≌△CHE;
(2)若∠G=∠BAC,则四边形ABCD是什么特殊四边形?并证明你的结论.
23.(2023•崂山区一模)已知:如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD,BC于点E,F,作BH⊥AF于点H,分别交AC,CD于点G,P,连接GE,GF.
(1)求证:△OAE≌△OBG;
(2)判断四边形BFGE是什么特殊四边形?并证明你的结论.
24.(2023•未央区校级三模)如图1,在平面直角坐标系中,矩形ABCD的顶点A,B分别在y轴,x轴上,当B在x轴上运动时,A随之在y轴上运动,矩形ABCD的形状保持不变,其中AB=6,BC=2.
(1)取AB的中点E,连接OE,DE,求OE+DE的值.
(2)如图2,若以AB为边长在第一象限内作等边三角形△ABP,运动过程中,点P到原点的最大距离是多少?
25.(2023•青岛模拟)已知:如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.
(1)求证:AB=AF;
(2)若∠ACB=30°,连接AG,判断四边形AGCD是什么特殊的四边形?并证明你的结论.
【名校自招练】
一.选择题(共7小题)
1.(2022•九龙坡区自主招生)如图,四边形ABCD是菱形,E、F分别是BC、CD两边上的点,添加一个条件,不能判定△ABE≌△ADF的是( )
A.EC=FCB.AE=AFC.∠BAF=∠DAED.BE=DF
2.(2022•渝北区自主招生)如图,菱形ABCD中,对角线AC,BD交于点O,点E在边BC上,连接AE,OE.若∠CAE=∠OBE,OE=2,CE=,则边AB的长为( )
A.B.C.D.5
3.(2022•南陵县自主招生)埃及胡夫金字塔是古代世界建筑奇迹之一,其底面是正方形,侧面是全等的等腰三角形,底面正方形的边长与侧面等腰三角形底边上的高的比值是,它介于整数n和n+1之间,则n的值是( )
A.1B.2C.3D.4
4.(2022•工业园区校级自主招生)如图,在矩形ABCD中,AB=4,AD=5,点E,F分别是边AB,BC上的动点,点E不与A,B重合,且EF=AB,G是五边形AEFCD内满足GE=GF且∠EGF=90°的点.现给出以下结论.其中错误的是( )
A.∠GEB与∠GFB一定互补
B.点G到边AB,BC的距离一定相等
C.点G到边AD,DC的距离可能相等
D.点G到边AB的距离的最大值为2
5.(2022•荣昌区自主招生)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠DAC=60°,点F在线段AO上,连接DF,以DF为边作等边三角形DFE,点E和点A分别位于DF两侧,下列结论:①DO=DA;②DF=EC;③∠ADF=∠ECF;④∠BDE=∠EFC中正确结论的序号为( )
A.①④B.①②③C.②③④D.①②③④
6.(2022•巴南区自主招生)如图,菱形ABCD中,对角线AC与BD交于点O,CE⊥AB于点E,F为线段AE上一点,若AC=6,BD=8,AF=AE,则线段CF的长度为( )
A.B.C.D.
7.(2022•北碚区自主招生)如图,在正方形ABCD中,P是AC上一点,且CP=,点E,F分别在AB,BC上,∠EPF=90°,PE=3PF,则线段AP的长是( )
A.2B.2C.3D.3
二.填空题(共3小题)
8.(2022•温江区校级自主招生)如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E作EF⊥BD,EG⊥AC,点F,G为垂足,若AC=10,BD=24,则FG的长为 .
9.(2022•相城区校级自主招生)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交BC、AD于点E、F,若BE=3,AF=5,则AC的长为 .
10.(2022•鄞州区校级自主招生)如图,在△ABC中以AC,BC为边向外作正方形ACFG与正方形BCDE,连结DF,并过C点作CH⊥AB于H并交FD于M.若∠ACB=120°,AC=3,BC=2,则MD的长为 .
三.解答题(共1小题)
11.(2022•南陵县自主招生)如图,BD是正方形ABCD的一条对角线,E是BD上一点,F是CB延长线上一点,连接CE,EF,AF.若DE=DC,EF=EC,求∠BAF的度数.
四边形
性 质
判 定
边
角
对角线
矩形
对边平行且相等
四个角是直角
相等且互相平分
①有一组邻边相等的平行四边形是菱形;
②四条边都相等的四边形是菱形;
③对角线互相垂直的平行四边形是菱形 .
中心、轴对称图形
菱形
四条边相等
对角相等,邻角互补
垂直且互相平分,每一条对角线平分一组对角
①有一个角是直角的平行四边形是矩形;
②有三个角是直角的四边形是矩形;
③对角线相等的平行四边形是矩形
中心对称图形
正方形
四条边相等
四个角是直角
相等、垂直、平分,并且每一条对角线平分一组对角
1、邻边相等的矩形是正方形
2、对角线垂直的矩形是正方形
3、有一个角是直角的菱形是正方形
4、对角线相等的菱形是正方形
中心、轴对称
等腰梯形
两底平行,两腰相等
同一底上的两个角相等
相等
1、两腰相等的梯形是等腰梯形;
2、在同一底上的两个角相等的梯形是等腰梯形;
3、对角线相等的梯形是等腰梯形.
轴对称图形
相关试卷
这是一份中考数学二轮复习冲刺第16讲正多边形与圆(知识精讲+真题练+模拟练+自招练)(2份打包,原卷版+解析版),文件包含中考数学二轮复习冲刺第16讲正多边形与圆知识精讲+真题练+模拟练+自招练原卷版doc、中考数学二轮复习冲刺第16讲正多边形与圆知识精讲+真题练+模拟练+自招练解析版doc等2份试卷配套教学资源,其中试卷共60页, 欢迎下载使用。
这是一份中考数学二轮复习冲刺第15讲 圆的有关概念、性质与圆有关的位置关系(知识精讲+真题练+模拟练+自招练)(2份打包,原卷版+解析版),文件包含中考数学二轮复习冲刺第15讲圆的有关概念性质与圆有关的位置关系知识精讲+真题练+模拟练+自招练原卷版doc、中考数学二轮复习冲刺第15讲圆的有关概念性质与圆有关的位置关系知识精讲+真题练+模拟练+自招练解析版doc等2份试卷配套教学资源,其中试卷共111页, 欢迎下载使用。
这是一份中考数学二轮复习冲刺第12讲 勾股定理及其逆定理(知识精讲+真题练+模拟练+自招练)(2份打包,原卷版+解析版),文件包含中考数学二轮复习冲刺第12讲勾股定理及其逆定理知识精讲+真题练+模拟练+自招练原卷版doc、中考数学二轮复习冲刺第12讲勾股定理及其逆定理知识精讲+真题练+模拟练+自招练解析版doc等2份试卷配套教学资源,其中试卷共65页, 欢迎下载使用。