|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年新高考数学一轮复习达标检测第17讲导数的应用__利用导数研究不等式恒成立能成立问题(教师版)
    立即下载
    加入资料篮
    2024年新高考数学一轮复习达标检测第17讲导数的应用__利用导数研究不等式恒成立能成立问题(教师版)01
    2024年新高考数学一轮复习达标检测第17讲导数的应用__利用导数研究不等式恒成立能成立问题(教师版)02
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年新高考数学一轮复习达标检测第17讲导数的应用__利用导数研究不等式恒成立能成立问题(教师版)

    展开
    这是一份2024年新高考数学一轮复习达标检测第17讲导数的应用__利用导数研究不等式恒成立能成立问题(教师版),共5页。

    A.a≤1 B.a≥1
    C.a≤2 D.a≥2
    【解析】选A.由题意知f(x)mineq \b\lc\(\rc\)(\a\vs4\al\c1(x∈\b\lc\[\rc\](\a\vs4\al\c1(\f(1,2),1))))≥g(x)min(x∈[2,3]),因为f(x)min=5,g(x)min=4+a,所以5≥4+a,即a≤1,故选A.
    2.设函数f(x)=exeq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(3,x)-3))-eq \f(a,x),若不等式f(x)≤0有正实数解,则实数a的最小值为________.
    【解析】原问题等价于存在x∈(0,+∞),使得a≥ex(x2-3x+3),令g(x)=ex(x2-3x+3),x∈(0,+∞),则a≥g(x)min,而g′(x)=ex(x2-x).由g′(x)>0可得x∈(1,+∞),由g′(x)<0可得x∈(0,1).据此可知,函数g(x)在区间(0,+∞)上的最小值为g(1)=e.综上可得,实数a的最小值为e.
    3.已知函数f(x)=ln x,g(x)=x-1.
    (1)求函数y=f(x)的图象在x=1处的切线方程;
    (2)若不等式f(x)≤ag(x)对任意的x∈(1,+∞)均成立,求实数a的取值范围.
    【解析】(1)因为f′(x)=eq \f(1,x),
    所以f′(1)=1.
    又f(1)=0,所以切线的方程为y-f(1)=f′(1)(x-1),
    即所求切线的方程为y=x-1.
    (2)易知对任意的x∈(1,+∞),f(x)>0,g(x)>0.
    ①当a≥1时,f(x)≤g(x)≤ag(x);
    ②当a≤0时,f(x)>0,ag(x)≤0,所以不满足不等式f(x)≤ag(x);
    ③当0<a<1时,设φ(x)=f(x)-ag(x)=ln x-a(x-1),则φ′(x)=eq \f(1,x)-a,
    令φ′(x)=0,得x=eq \f(1,a),
    当x变化时,φ′(x),φ(x)的变化情况下表:
    所以φ(x)max=φeq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a)))>φ(1)=0,不满足不等式.
    综上,实数a的取值范围为[1,+∞).
    4.已知函数f(x)=ax-ex(a∈R),g(x)=eq \f(ln x,x).
    (1)求函数f(x)的单调区间;
    (2)∃x0∈(0,+∞),使不等式f(x)≤g(x)-ex成立,求a的取值范围.
    【解析】(1)因为f′(x)=a-ex,x∈R.
    当a≤0时,f′(x)<0,f(x)在R上单调递减;
    当a>0时,令f′(x)=0得x=ln a.
    由f′(x)>0得f(x)的单调递增区间为(-∞,ln a);
    由f′(x)<0得f(x)的单调递减区间为(ln a,+∞).
    (2)因为∃x0∈(0,+∞),使不等式f(x)≤g(x)-ex,
    则ax≤eq \f(ln x,x),即a≤eq \f(ln x,x2).
    设h(x)=eq \f(ln x,x2),则问题转化为a≤eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(ln x,x2)))eq \s\d7(max),
    由h′(x)=eq \f(1-2ln x,x3),令h′(x)=0,则x=eq \r(e).
    当x在区间(0,+∞)内变化时,h′(x),h(x)的变化情况如下表:
    由上表可知,当x=eq \r(e)时,函数h(x)有极大值,即最大值为eq \f(1,2e).所以a≤eq \f(1,2e).
    5.已知函数f(x)=ln x-a(x+1),a∈R,在(1,f(1))处的切线与x轴平行.
    (1)求f(x)的单调区间;
    (2)若存在x0>1,当x∈(1,x0)时,恒有f(x)-eq \f(x2,2)+2x+eq \f(1,2)>k(x-1)成立,求k的取值范围.
    【解析】(1)由已知可得f(x)的定义域为(0,+∞).因为f′(x)=eq \f(1,x)-a,所以f′(1)=1-a=0,所以a=1,所以f′(x)=eq \f(1,x)-1=eq \f(1-x,x),令f′(x)>0得01,所以f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).
    (2)不等式f(x)-eq \f(x2,2)+2x+eq \f(1,2)>k(x-1)可化为ln x-eq \f(x2,2)+x-eq \f(1,2)>k(x-1).令g(x)=ln x-eq \f(x2,2)+x-eq \f(1,2)-k(x-1)(x>1),则g′(x)=eq \f(1,x)-x+1-k=eq \f(-x2+(1-k)x+1,x),令h(x)=-x2+(1-k)x+1,x>1,h(x)的对称轴为x=eq \f(1-k,2).
    ①当eq \f(1-k,2)≤1时,即k≥-1,易知h(x)在(1,x0)上单调递减,所以h(x)0,所以必存在x0使得x∈(1,x0)时,g′(x)>0,所以g(x)在(1,x0)上单调递增,所以g(x)>g(1)=0恒成立,符合题意.
    ②当eq \f(1-k,2)>1时,即k<-1,易知必存在x0,使得h(x)在(1,x0)上单调递增.所以h(x)>h(1)=1-k>0,所以g′(x)>0,所以g(x)在(1,x0)上单调递增.所以g(x)>g(1)=0恒成立,符合题意.
    综上,k的取值范围是(-∞,1).
    6.设f(x)=xex,g(x)=eq \f(1,2)x2+x.
    (1)令F(x)=f(x)+g(x),求F(x)的最小值;
    (2)若任意x1,x2∈[-1,+∞),且x1>x2,有m[f(x1)-f(x2)]>g(x1)-g(x2)恒成立,求实数m的取值范围.
    【解析】(1)因为F(x)=f(x)+g(x)=xex+eq \f(1,2)x2+x,
    所以F′(x)=(x+1)(ex+1),
    令F′(x)>0,解得x>-1,令F′(x)<0,解得x<-1,
    所以F(x)在(-∞,-1)上单调递减,在(-1,+∞)上单调递增.
    故F(x)min=F(-1)=-eq \f(1,2)-eq \f(1,e).
    (2)因为任意x1,x2∈[-1,+∞),且x1>x2,有m[f(x1)-f(x2)]>g(x1)-g(x2)恒成立,
    所以mf(x1)-g(x1)>mf(x2)-g(x2)恒成立.
    令h(x)=mf(x)-g(x)=mxex-eq \f(1,2)x2-x,x∈[-1,+∞),
    即只需证h(x)在[-1,+∞)上单调递增即可.
    故h′(x)=(x+1)(mex-1)≥0在[-1,+∞)上恒成立,
    故m≥eq \f(1,ex),而eq \f(1,ex)≤e,故m≥e,
    即实数m的取值范围是[e,+∞).
    [B组]—强基必备
    1.已知函数f(x)=ax+x2-xln a(a>0,a≠1).
    (1)求函数f(x)的极小值;
    (2)若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1(e是自然对数的底数),求实数a 的取值范围.
    【解析】 (1)f′(x)=axln a+2x-ln a=2x+(ax-1)ln a.
    ∵当a>1时,ln a>0,函数y=(ax-1)ln a在R上是增函数,
    当0∴当a>1或0又∵f′(0)=0,∴f′(x)>0的解集为(0,+∞),f′(x)<0的解集为(-∞,0),故函数f(x)的单调递增区间为(0,+∞),单调递减区间为(-∞,0),
    ∴函数f(x)在x=0处取得极小值1.
    (2)∵存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,
    ∴只需f(x)max-f(x)min≥e-1即可.
    由(1)可知,当x∈[-1,1]时,f(x)在[-1,0]上是减函数,在(0,1]上是增函数,
    ∴当x∈[-1,1]时,f(x)min=f(0)=1,f(x)max为f(-1)和f(1)中的较大者.
    f(1)-f(-1)=(a+1-ln a)-eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a)+1+ln a))=a-eq \f(1,a)-2ln a,
    令g(a)=a-eq \f(1,a)-2ln a(a>0),
    ∵g′(a)=1+eq \f(1,a2)-eq \f(2,a)=eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,a)))2>0,
    ∴g(a)=a-eq \f(1,a)-2ln a在(0,+∞)上是增函数.
    而g(1)=0,故当a>1时,g(a)>0,即f(1)>f(-1);
    当0∴当a>1时,f(1)-f(0)≥e-1,即a-ln a≥e-1.
    由函数y=a-ln a在(1,+∞)上是增函数,解得a≥e;
    当0由函数y=eq \f(1,a)+ln a在(0,1)上是减函数,解得0综上可知,所求实数a的取值范围为eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(1,e)))∪[e,+∞).x
    eq \b\lc\(\rc\)(\a\vs4\al\c1(1,\f(1,a)))
    eq \f(1,a)
    eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a),+∞))
    φ′(x)

    0

    φ(x)

    极大值

    x
    (0,eq \r(e))
    eq \r(e)
    (eq \r(e),+∞)
    h′(x)

    0

    h(x)
    单调递增
    极大值eq \f(1,2e)
    单调递减
    相关试卷

    2024年新高考数学一轮复习知识梳理与题型归纳第18讲导数的应用__利用导数研究不等式恒成立能成立问题(教师版): 这是一份2024年新高考数学一轮复习知识梳理与题型归纳第18讲导数的应用__利用导数研究不等式恒成立能成立问题(教师版),共7页。

    2024年新高考数学一轮复习题型归纳与达标检测第18讲导数的应用——利用导数研究不等式恒成立(能成立)问题(讲)(Word版附解析): 这是一份2024年新高考数学一轮复习题型归纳与达标检测第18讲导数的应用——利用导数研究不等式恒成立(能成立)问题(讲)(Word版附解析),共6页。

    高中数学高考第18讲 导数的应用——利用导数研究不等式恒成立(能成立)问题(学生版): 这是一份高中数学高考第18讲 导数的应用——利用导数研究不等式恒成立(能成立)问题(学生版),共7页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年新高考数学一轮复习达标检测第17讲导数的应用__利用导数研究不等式恒成立能成立问题(教师版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map