年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2024年新高考数学一轮复习达标检测第47讲椭圆及其性质(学生版)

    立即下载
    加入资料篮
    2024年新高考数学一轮复习达标检测第47讲椭圆及其性质(学生版)第1页
    2024年新高考数学一轮复习达标检测第47讲椭圆及其性质(学生版)第2页
    2024年新高考数学一轮复习达标检测第47讲椭圆及其性质(学生版)第3页
    还剩3页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年新高考数学一轮复习达标检测第47讲椭圆及其性质(学生版)

    展开

    这是一份2024年新高考数学一轮复习达标检测第47讲椭圆及其性质(学生版),共6页。
    1.已知椭圆+=1(a>b>0)的离心率为,则( )
    A.a2=2b2B.3a2=4b2C.a=2bD.3a=4b
    2.以椭圆的长轴端点作为短轴端点,且过点(﹣4,1)的椭圆的焦距是( )
    A.16B.12C.8D.6
    3.已知椭圆的离心率为,则实数m=( )
    A.±2B.C.D.±3
    4.过点(2,),焦点在x轴上且与椭圆+=1有相同的离心率的椭圆方程为( )
    A.+=1B.+=1
    C.+=1D.+=1
    5.已知椭圆C的焦点为F1(﹣c,0),F2(c,0),其中c>0,C的长轴长为2a,过F1的直线与C交于A,B两点.若|AF1|=3|F1B|,4|BF2|=5|AB|,则|AF2|=( )
    A.B.aC.D.a
    6.已知椭圆的右焦点为F,以C上点M为圆心的圆与x轴相切于点F,并与y轴交于A,B两点.若,则C的焦距为( )
    A.B.2C.D.4
    7.已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过点F2的直线与椭圆C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为( )
    A.+y2=1B.+=1
    C.+=1D.+=1
    8.已知椭圆,焦点F1(﹣2,0),F2(2,0).过F1(﹣2,0)作倾斜角为60°的直线L交上半椭圆于点A,以F1A,F1O(O为坐标原点)为邻边作平行四边形OF1AB,点B恰好也在椭圆上,则b2=( )
    A.B.C.4D.12
    9.(多选)已知椭圆C:的左、右焦点分别为F1、F2,且|F1F2|=2,点P(1,1)在椭圆内部,点Q在椭圆上,则以下说法正确的是( )
    A.|QF1|+|QP|的最小值为2a﹣1
    B.椭圆C的短轴长可能为2
    C.椭圆C的离心率的取值范围为
    D.若,则椭圆C的长轴长为
    10.若方程表示焦点在y轴上的椭圆,则实数m的取值范围为 .
    11.已知椭圆C的中心在原点,焦点在x轴上,若C的短轴长为,且两个焦点恰好为长轴的2个相邻的五等分点,则此椭圆的标准方程为 .
    12.已知椭圆=1的左、右焦点分别为F1,F2,A,B是椭圆上位于x轴上方的两点,且直线AF1与直线BF2平行,若|AF1|﹣|BF2|=,则△AF1F2的面积为 .
    13.已知椭圆(a>b>0)的离心率为,短轴长为2,点P为椭圆上任意一点,则的最小值是 .
    14.已知椭圆C:(a>b>0)的左焦点为F,经过原点的直线与C交于A,B两点,总有∠AFB≥120°,则椭圆C离心率的取值范围为 .
    15.如图,过原点O的直线AB交椭圆于A,B两点,过点A分别作x轴、AB的垂线AP.AQ交椭圆C于点P.Q,连接BQ交AP于一点M,若,则椭圆C的离心率是 .
    16.已知椭圆+=1的左焦点为F,点P在椭圆上且在x轴的上方.若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是 .
    17.求适合下列条件的椭圆的标准方程:
    (1)已知某椭圆的左右焦点分别为F1(﹣1,0),F2(1,0),且经过点;
    (2)椭圆经过点,.
    18.已知椭圆的短轴长为2.
    (1)若椭圆C经过点,求椭圆C的方程;
    (2)A为椭圆C的上顶点,B(0,3),椭圆C上存在点P,使得.求椭圆C的离心率的取值范围.
    19.已知椭圆,C的中心为O,左、右焦点分别为F1,F2.上顶点为A,右顶点为B,且|OB|、|OA|、|OF2|成等比数列.
    (1)求椭圆C的离心率;
    (2)判断△F1AB的形状,并说明理由.
    20.已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.
    (1)若△POF2为等边三角形,求C的离心率;
    (2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b的值和a的取值范围.
    [B组]—强基必备
    1.圆锥曲线与空间几何体具有深刻而广泛的联系.如图所示,底面半径为1,高为3的圆柱内放有一个半径为1的球,球与圆柱下底面相切,作不与圆柱底面平行的平面α与球相切于点F,若平面α与圆柱侧面相交所得曲线为封闭曲线τ,τ是以F为一个焦点的椭圆,则τ的离心率的取值范围是( )
    A.B.C.D.
    2.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,点P为椭圆C上不与左右顶点重合的动点,设I,G分别为△PF1F2的内心和重心.当直线IG的倾斜角不随着点P的运动而变化时,椭圆C的离心率为 .
    3.如图,在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的右焦点为F(c,0),下顶点为P,过点M(0,)的动直线l交椭圆C于A,B两点.
    (1)当直线l平行于x轴时,P,F,A三点共线,且PA=,求椭圆C的方程;
    (2)当椭圆C的离心率为何值时,对任意的动直线l,总有PA⊥PB?

    相关试卷

    2024年新高考数学一轮复习达标检测第48讲直线与椭圆的位置关系(学生版):

    这是一份2024年新高考数学一轮复习达标检测第48讲直线与椭圆的位置关系(学生版),共7页。

    2024年新高考数学一轮复习知识梳理与题型归纳第48讲椭圆及其性质(学生版):

    这是一份2024年新高考数学一轮复习知识梳理与题型归纳第48讲椭圆及其性质(学生版),共4页。试卷主要包含了椭圆的定义,椭圆的标准方程,椭圆的几何性质等内容,欢迎下载使用。

    2024年新高考数学一轮复习题型归纳与达标检测第48讲椭圆及其性质(讲)(Word版附解析):

    这是一份2024年新高考数学一轮复习题型归纳与达标检测第48讲椭圆及其性质(讲)(Word版附解析),共6页。试卷主要包含了椭圆的定义,椭圆的标准方程,椭圆的几何性质等内容,欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map