所属成套资源:2024年新高考数学一轮复习知识梳理与题型归纳全套
2024年新高考数学一轮复习知识梳理与题型归纳第39讲空间点直线平面之间的位置关系(学生版)
展开
这是一份2024年新高考数学一轮复习知识梳理与题型归纳第39讲空间点直线平面之间的位置关系(学生版),共6页。试卷主要包含了四个公理,空间直线的位置关系等内容,欢迎下载使用。
知识梳理
1.四个公理
公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.
公理2:过不在一条直线上的三点,有且只有一个平面.
公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.
公理4:平行于同一条直线的两条直线互相平行.
2.空间直线的位置关系
(1)位置关系的分类
eq \b\lc\{(\a\vs4\al\c1(共面直线\b\lc\{(\a\vs4\al\c1(平行,相交)),异面直线:不同在任何一个平面内))
(2)异面直线所成的角
①定义:设a,b是两条异面直线,经过空间中任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)叫做异面直线a与b所成的角(或夹角);
②范围:eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(π,2))).
(3)定理
空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.
3.空间中直线与平面、平面与平面的位置关系
(1)空间中直线与平面的位置关系
(2)空间中两个平面的位置关系
题型归纳
题型1 平面的基本性质及应用
【例1-1】如图,空间四边形中,、分别是、的中点,、分别在、上,且.
(1)求证:、、、四点共面;
(2)设与交于点,求证:、、三点共线.
【跟踪训练1-1】如图,在正四棱柱中,,,点为正方形的中心,点为的中点,点为的中点,则
A.、、、四点共面,且
B.、、、四点共面,且
C.、、、四点不共面,且
D.、、、四点不共面,且
【跟踪训练1-2】如图所示,正方体中,与截面交于点,,交于点,求证:,,三点共线.
【名师指导】
1.证明点或线共面问题的2种方法
(1)首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;
(2)将所有条件分为两部分,然后分别确定平面,再证两平面重合.
2.证明点共线问题的2种方法
(1)先由两点确定一条直线,再证其他各点都在这条直线上;
(2)直接证明这些点都在同一条特定直线上.
3.证明线共点问题的常用方法
先证其中两条直线交于一点,再证其他直线经过该点.
题型2 空间两直线位置关系的判定
【例2-1】如图,在四棱锥中,底面为梯形,,,,,分别为棱,的中点,则
A.,且直线,是共面直线
B.,且直线,是异面直线
C.,且直线,是异面直线
D.,且直线,是共面直线
【跟踪训练2-1】正方体,下列命题中正确的是
A.与相交直线且垂直B.与是异面直线且垂直
C.与是相交直线且垂直D.与是异面直线且垂直
【跟踪训练2-2】如图,正方体的所有棱中,其所在的直线与直线成异面直线的共有 条.
【跟踪训练2-3】在图中,、、、分别是正三棱柱的顶点或所在棱的中点,则表示直线、是异面直线的图形有 .(填上所有正确答案的序号)
【名师指导】
异面直线的判定方法
题型3 求异面直线所成的角
【例3-1】在正方体中,为棱的中点,则异面直线与所成角的正切值为
A.B.C.D.
【例3-2】在空间四边形中,已知,,,分别是,的中点,,则异面直线与所成角的大小为
A.B.C.D.
【跟踪训练3-1】如图所示,三棱柱所有棱长均相等,各侧棱与底面垂直,,分别为棱,的中点,则异面直线与所成角的余弦值为
A.B.C.D.
【跟踪训练3-2】在四棱锥中,平面,,四边形是边长为2的正方形,是的中点,则异面直线与所成角的余弦值是
A.B.C.D.
【跟踪训练3-3】已知三棱锥,底面,,底面是等腰直角三角形,,是的中点.求
(1)三棱锥的体积;
(2)异面直线与所成角的大小.
【名师指导】
用平移法求异面直线所成的角的三步骤
(1)一作:根据定义作平行线,作出异面直线所成的角;
(2)二证:证明作出的角是异面直线所成的角;
(3)三求:解三角形,求出所作的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.位置关系
图形表示
符号表示
公共点
直线a在平面α内
a⊂α
有无数个公共点
直线在平面外
直线a与平面α平行
a∥α
没有公共点
直线a与平面α斜交
a∩α=A
有且只有一个公共点
直线a与平面α垂直
a⊥α
位置关系
图形表示
符号表示
公共点
两平面平行
α∥β
没有
公共点两平面相交
斜交
α∩β=l
有一条公共直线
垂直
α⊥β且
α∩β=a
相关试卷
这是一份2024年新高考数学一轮复习题型归纳与达标检测第39讲空间点、直线、平面之间的位置关系(讲)(Word版附解析),共6页。试卷主要包含了四个公理,空间直线的位置关系等内容,欢迎下载使用。
这是一份高中数学高考第39讲 空间点、直线、平面之间的位置关系(讲)(学生版),共8页。试卷主要包含了四个公理,空间直线的位置关系等内容,欢迎下载使用。
这是一份高中数学高考第39讲 空间点、直线、平面之间的位置关系(讲)(教师版),共15页。试卷主要包含了四个公理,空间直线的位置关系等内容,欢迎下载使用。