所属成套资源:2024年新高考数学题型最全归纳【精品讲义二十六讲】(原卷版+解析)
2024年新高考数学题型全归纳讲义第二十一讲直线与圆综合应用归类(原卷版+解析)
展开
这是一份2024年新高考数学题型全归纳讲义第二十一讲直线与圆综合应用归类(原卷版+解析),共58页。
TOC \ "1-1" \h \u \l "_Tc15774" 题型01 含参直线过定点 PAGEREF _Tc15774 \h 1
\l "_Tc16253" 题型02 含参双直线型 PAGEREF _Tc16253 \h 2
\l "_Tc3565" 题型03 圆切线型含参动直线 PAGEREF _Tc3565 \h 3
\l "_Tc14120" 题型04圆综合:弦长最值 PAGEREF _Tc14120 \h 3
\l "_Tc3014" 题型05圆综合:切线最值 PAGEREF _Tc3014 \h 4
\l "_Tc13101" 题型06圆综合:三角形面积最值 PAGEREF _Tc13101 \h 5
\l "_Tc19109" 题型07圆综合:四边形最值 PAGEREF _Tc19109 \h 6
\l "_Tc8930" 题型08 圆综合:切线转化 PAGEREF _Tc8930 \h 7
\l "_Tc10026" 题型09 圆综合:将军饮马型最值 PAGEREF _Tc10026 \h 7
\l "_Tc30852" 题型10圆综合:切点弦 PAGEREF _Tc30852 \h 8
\l "_Tc6738" 题型11圆综合:切点弦过定点 PAGEREF _Tc6738 \h 9
\l "_Tc8709" 题型12圆综合:切点弦最值 PAGEREF _Tc8709 \h 10
\l "_Tc30599" 题型13直线与圆综合:两圆公切线 PAGEREF _Tc30599 \h 11
\l "_Tc21854" 题型14 直线与圆综合:超难压轴小题选 PAGEREF _Tc21854 \h 12
\l "_Tc29743" 高考练场 PAGEREF _Tc29743 \h 12
题型01 含参直线过定点
【解题攻略】
【典例1-1】(2023上·重庆开州·高三重庆市开州中学校考阶段练习)已知,,若,则( )
A.B.C.或D.
【典例1-2】(2020下·高三课时练习)若,且,则直线必不过( ).
A.第一象限B.第二象限C.第三象限D.第四象限
【变式1-1】(2024上·天津·高三天津市第一百中学校联考)直线:与圆:交于、两点,点为中点,直线:与两坐标轴分别交于、两点,则面积的最大值为( )
A.B.9C.10D.
【变式1-2】.(2024上·江苏苏州·高三统考)在平面直角坐标系中,直线:被圆:截得的最短弦的长度为( )
A.B.2C.D.4
【变式1-3】(2024上·内蒙古锡林郭勒盟·高三统考)设点,直线:,当点到的距离最大时,直线的斜率为( )
A.B.C.D.
题型02 含参双直线型
【解题攻略】
【典例1-1】(2023上·浙江绍兴·高三绍兴一中校考)已知,,三点,直线l1:与直线l2:相交于点P,则的最大值( )
A.72B.80C.88D.100
【典例1-2】(2024上·全国·高三)过定点的直线与过定点的直线交于点(与不重合),则面积的最大值为( )
A.4B.C.2D.
【变式1-1】(2023上·全国·高三)已知,,直线:与直线:相交于点,则的面积最大值为( )
A.10B.14C.18D.20
【变式1-2】(2024上·全国·高三)设,若过定点A的动直线和过定点B的动直线交于点,则的最大值是( )
A.B.2C.3D.5
【变式1-3】AB中点为Q,则的值为( )
A.B.C.D.与m的取值有关
题型03 圆切线型含参动直线
【解题攻略】
【典例1-1】(2022上·湖南怀化·高三校考)在直角坐标系中,全集,集合,已知集合A的补集所对应区域的对称中心为M,点P是线段(,)上的动点,点Q是x轴上的动点,则周长的最小值为( )
A.24B.C.14D.
【典例1-2】(2023上·全国·高三专题练习)设直线系,对于下列四个结论:
(1)当直线垂直于轴时,或;
(2)当时,直线倾斜角为;
(3)中所有直线均经过一个定点;
(4)存在定点不在中任意一条直线上.
其中正确的是( )
A.①②B.③④C.②③D.②④
【变式1-1】(2021·广东·福田外国语高中高三阶段练习)已知实数满足,则的最小值为_______.
【变式1-2】(2021·上海·华师大二附中高三阶段练习)直线系,直线系A中能组成正三角形的面积等于______.
题型04圆综合:弦长最值
【解题攻略】
【典例1-1】(2023·全国·高三专题练习)已知直线与圆相交于M,N两点.则的最小值为( )
A.B.C.4D.6
【典例1-2】.(2022秋·重庆·高三统考)已知圆,直线与圆相交于,两点,则的最小值为( )
A.2B.C.4D.
【变式1-1】(2022秋·广东广州·高三校联考)直线与圆相交于两点,则的最小值为( )
A.6B.4C.D.
【变式1-2】.(2022秋·新疆乌鲁木齐·高三乌市一中校考)圆截直线所得的弦长最短时,实数 ( )
A.B.C.2D.
【变式1-3】(2022秋·浙江宁波·高三校考)已知圆:,则动直线:所截得弦长的取值范围是( )
A.B.C.D.
题型05圆综合:切线最值
【解题攻略】
【典例1-1】(2021·吉林·长春市第二中学高三)已知为直线上一点,过作圆的切线,则切线长最短时的切线方程为__________.
【典例1-2】(2022·河南·修武一中高三开学考试(文))已知点在直线上,过点作圆的切线,切点为,则的最小值为( )
A.B.2C.D.3
【变式1-1】(2021·全国·高三课时练习)由直线上的一点向圆引切线,则切线段长的最小值为 ______ .
【变式1-2】(2022·广东·鹤山市鹤华中学高三开学考试)已知直线平分圆的面积,过圆外一点向圆做切线,切点为Q,则的最小值为( )
A.4B.5C.6D.7
【变式1-3】(2022·四川·泸县五中高三(文))已知直线是圆的一条对称轴,过点向圆作切线,切点为,则( )
A.B.C.D.
题型06圆综合:三角形面积最值
【解题攻略】
【典例1-1】(2021·浙江·金乡卫城中学高三)如图是直线在第一象限内的动点,过作圆的两条切线,切点为,直线交坐标轴正方向于两点,则面积的最小值是( )
A.B.1C.D.2
【典例1-2】(2021·全国·高三专题练习)已知直线:与圆:()相离,过直线上的动点做圆的一条切线,切点为,若面积的最小值是,则( )
A.1B.C.1或D.2
【变式1-1】.(2022·江苏·高三单元测试)已知圆,P为直线上的动点,过点P作圆C的切线,切点为A,当的面积最小时,的外接圆的方程为( )
A.B.
C.D.
【变式1-2】(2021·四川·成都外国语学校高三阶段练习(文))已知定直线的方程为,点是直线上的动点,过点作圆的一条切线,是切点,是圆心,若面积的最小值为,则面积最小时直线的斜率为( )
A.B.C.D.
【变式1-3】(2022·全国·高三专题练习)过x轴上一点P向圆作圆的切线,切点为A、B,则面积的最小值是( )
A.B.C.D.
题型07圆综合:四边形最值
【解题攻略】
【典例1-1】(2021·江苏·高三专题练习)已知点是直线上一动点,与是圆的两条切线,为切点,则四边形的最小面积为( )
A.B.C.D.
【典例1-2】(2022·全国·高三课时练习)已知圆,直线,点为上一动点,过点作圆的切线,(切点为,),当四边形的面积最小时,直线的方程为( )
A.B.C.D.
【变式1-1】(2020·安徽·定远县私立启明民族中学高三阶段练习(理))已知是圆外一点,过点作圆的切线,切点为,记四边形的面积为,当在圆上运动时,的取值范围为( )
A.B.C.D.
【变式1-2】(2021·全国·高三)从直线上的动点作圆的两条切线,切点分别为、,则最大时,四边形(为坐标原点)面积是( )
A.B.C.D.
【变式1-3】(2022·全国·高三课时练习)已知P是直线l:3x-4y+11=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线,C是圆心,那么四边形PACB面积的最小值是( )
A.B.2C.D.2
题型08 圆综合:切线转化
【解题攻略】
【典例1-1】.(2021·江苏·高三专题练习)已知圆,直线,若直线上存在点,过点引圆的两条切线,使得,则实数的取值范围是
A.B.[,]
C.D.)
【典例1-2】(2022·安徽省宣城中学高三开学考试)已知点P是直线l:上的动点,过点P引圆C:的两条切线PM,PN,M,N为切点,当的最大值为时,则r的值为
A.4B.3C.2D.1
【变式1-1】(2021·山东德州·高三)已知点是直线上的一个动点,过点作圆的两条切线,,其中,为切点,若的最大值为120°,则的值为( )
A.B.C.4D.6
【变式1-2】(2021·全国·高三专题练习)已知圆:,直线:,若在直线上任取一点作圆的切线,,切点分别为,,则最小时,原点到直线的距离为( )
A.B.C.D.
【变式1-3】(2021·全国·高三专题练习)在平面直角坐标系中,已知圆:,若直线:上有且只有一个点满足:过点作圆C的两条切线PM,PN,切点分别为M,N,且使得四边形PMCN为正方形,则正实数m的值为( )
A.1B.C.3D.7
题型09 圆综合:将军饮马型最值
【典例1-1】(2019·江西南昌·校联考二模)唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为,若将军从点处出发,河岸线所在直线方程为,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为
A.B.C.D.
【典例1-2】(2022上·山西太原·高三山西大附中校考阶段练习)唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”,即将军在观望烽火之后从山脚下某处出发,先到河边饮马再回到军营,怎样走才能使总路程最短?在如图所示的直角坐标系中,设军营所在平面区域为,河岸线所在直线方程为.假定将军从点处出发,只要到达军营所在区域即回到军营,则将军可以选择最短路程为 .
【变式1-1】(2022下·上海宝山·高三上海交大附中校考开学考试)如图,平面上两点,在直线上取两点使,且使的值取最小,则的坐标为 .
【变式1-2】(2023上·湖南益阳·高三桃江县第一中学校联考阶段练习)唐代诗人李颀的诗《古从军行》开头两句为“白日登山望烽火,黄昏饮马傍交河”,其中隐含了一个有趣的数学问题——“将军饮马”,即将军白天观望烽火台,黄昏时从山脚下某处出发先到河边饮马再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,已知将军从山脚下的点处出发,军营所在的位置为,河岸线所在直线的方程为,则“将军饮马”的最短总路程为( )
A.3B.4C.5D.6
【变式1-3】(2023上·山西·高三校联考开学考试)唐代诗人李颀的诗《古从军行》开头两句:“白日登山望烽火,黄昏饮马傍交河”隐藏着一个有趣的数学问题——“将军饮马”,即某将军观望完烽火台之后从山脚的某处出发,先去河边饮马,再返回军营,怎样走能使总路程最短?在平面直角坐标系中有两条河流,,其方程分别为,,点,,则下列说法正确的是( )
A.将军从出发,先去河流饮马,再返回的最短路程是7
B.将军从出发,先去河流饮马,再返回的最短路程是7
C.将军从出发,先去河流饮马,再去河流饮马,最后返回的最短路程是
D.将军从出发,先去河流饮马,再去河流饮马,最后返回的最短路程是
题型10圆综合:切点弦
【解题攻略】
【典例1-1】(2022秋·四川绵阳·高三四川省绵阳江油中学校考阶段练习)已知圆M:,直线l:,P为直线l上的动点,过P点作圆M的切线PA、PB,切点为A、B,当最小时,直线AB的方程为( )
A.B.
C.D.
【典例1-2】(2022秋·山东·高三山东省实验中学校考)已知圆与直线,过l上任意一点P向圆C引切线,切点为A,B,若线段长度的最小值为,则实数m的值为( )
A.B.C.D.
【变式1-1】(2023秋·江苏·高三南京市人民中学校联考开学考试)已知是上一点,过点作圆的两条切线,切点分别为,当直线与平行时,( )
A.B.C.D.4
【变式1-2】(2023春·河南南阳·高三统考)过坐标原点作圆的两条切线,切点分别为,,则( )
A.B.C.D.2
【变式1-3】(2023·全国·高三专题练习)已知直线与圆,过直线上的任意一点向圆引切线,设切点为,若线段长度的最小值为,则实数的值是( )
A.B.C.D.
题型11圆综合:切点弦过定点
【解题攻略】
【典例1-1】(2022·全国·高三单元测试)已知圆的圆心为原点,且与直线相切.点在直线上,过点引圆的两条切线,,切点分别为,,如图所示,则直线恒过定点的坐标为
A.B.C.D.
【典例1-2】(2021·江苏·高三单元测试)已知圆:,点为直线上一动点,过点向圆引两条切线、,、为切点,则直线过定点( )
A.B.C.D.
【变式1-1】(2021·山西·太原市第六十六中学校高三)已知点P是直线上的动点,过点P作圆的切线,切点分别是A,B,则直线AB恒过定点的坐标为___________.
【变式1-2】(2023·全国·高三专题练习)已知过点作圆的两条切线,,切点分别为,,则直线必过定点( )
A.B.
C.D.
【变式1-3】(2022·四川省资阳市雁江区伍隍中学高三开学考试(理))已知圆:,点是直线:上的动点,过点引圆的两条切线、,其中、为切点,则直线经过定点( )
A.B.C.D.
题型12圆综合:切点弦最值
【解题攻略】
【典例1-1】(2021·江苏·高三专题练习)若为直线上一个动点,从点引圆的两条切线,(切点为,),则线段的长度的取值范围是( )
A.B.C.D.
【典例1-2】(2022·江苏·高三课时练习)过圆:外一点作圆的切线,切点分别为、,则( )
A.2B.C.D.3
【变式1-1】(2022·江西·上高三中高三阶段练习(文))若为直线上一个动点,从点引圆:的两条切线,(切点为,),则的最小值是( )
A.B.C.D.6
【变式1-2】(2020·四川·宜宾市教科所高三(文))已知圆和圆,过圆上任意一点作圆的两条切线,设两切点分别为,则线段长度的取值范围为( )
A.B.C.D.
【变式1-3】(2021·江苏·高三专题练习)在平面直角坐标系中,已知点满足,过作单位圆的两条切线,切点分别为,则线段长度的取值范围是______.
题型13直线与圆综合:两圆公切线
【典例1-1】(2020·江西·南昌市新建区第一中学高三阶段练习(理))圆与圆的公切线有( )条.
A.1B.2C.3D.4
【典例1-2】(2021·江苏·高三专题练习)已知,两圆与相交于A、B两点,且在点A处两圆的切线互相垂直,则线段AB的长度为( )
A.3B.4C.D.
【变式1-1】(2019·四川·成都七中高一)若圆:与圆:相交于,两点,且两圆在点处的切线互相垂直,则公共弦的长度是______.
【变式1-2】(2021·江苏·高三专题练习)已知:与:相交于A,B两点,若两圆在A点处的切线互相垂直,且,则的方程为___________.
【变式1-3】(2021·全国·高三课时练习)若圆:与圆:相交于,两点,且两圆在点处的切线互相垂直,则线段的长为______.
题型14 直线与圆综合:超难压轴小题选
【典例1-1】(2022·湖南常德·常德市一中校考二模)已知圆和两点,若圆C上存在点P,使得,则a的最小值为( )
A.6B.5C.4D.3
【典例1-2】(2023·山东·山东师范大学附中校考模拟预测)在平面直角坐标系中,点,直线.设圆的半径为1,圆心在l上.若圆C上存在点M,使,则圆心C的横坐标a的取值范围为( )
A.B.C.D.
【变式1-1】(2023春·湖北·高三黄石二中校联考阶段练习)直线与分别与圆交于、和、,则四边形面积的最大值为( )
A.B.C.10D.15
【变式1-2】(2023·黑龙江大庆·大庆实验中学校考模拟预测)已知圆和两点,,若圆C上至少存在一点P,使得,则实数a的取值范围是( )
A.B.C.D.
【变式1-3】(2023·湖北·统考模拟预测)已知点在圆运动,若对任意点,在直线上均存在两点,使得恒成立,则线段长度的最小值是( )
A.B.C.D.
高考练场
1..(2024上·四川巴中·高三统考)若曲线与曲线有四个不同的交点,则实数m的取值范围是( )
A.或B.
C.D.
2.(2023上·四川成都·高三四川省成都市西北中学校考阶段练习)巳知直线与直线分别过定点A,B,且交于点P,则面积的最大值是( )
A.5B.8C.10D.16
3.(2021·浙江省青田县中学高三)在平面直角坐标系内,点,集合,任意的点,则的取值范围是___________.
4.(2021秋·湖南长沙·高三湖南师大附中校考阶段练习)已知点,若圆C:()上存在两点,使得,则r的取值范围是( )
A.B.C.D.
5.(2022·全国·高三课时练习)已知圆,直线,点P为直线l上任意一点,过P作圆C的一条切线,切点为A,则切线段的最小值为( )
A.B.C.2D.4
6.(2022·浙江·高三专题练习)已知定直线l的方程为,点Q是直线l上的动点,过点Q作圆的一条切线,是切点,C是圆心,若面积的最小值为,则此时直线l上的动点E与圆C上动点F的距离的最小值为( )
A.B.2C.D.
7.(2019·安徽·芜湖一中高三(理))由直线上的一点向圆:引切线,切点分别为,,则四边形面积的最小值为
A.1B.C.D.3
8.(2021·全国·高三单元测试)已知圆,为圆上一动点,过点作圆的切线交线段为坐标原点)的垂直平分线于点,则点到原点的距离的最小值是( )
A.B.C.D.
9.(2023上·江苏镇江·高三统考)唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题—“将军饮马”,即将军在观望烽火之后从山脚下某处出发,先到河边饮马再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在平面区域为,河岸线所在直线方程为.假定将军从点处出发,只要到达军营所在区域边界即为回到军营,则“将军饮马”的最短总路程为 .
10.(2022秋·福建莆田·高三莆田第六中学校考阶段练习)过直线上一动点,向圆引两条切线,为切点,线段的最小值为( )
A.B.C.D.
11.(2022·江苏·高三课时练习)已知点P为直线上的动点,过点P作圆的两条切线,切点分别为A、B,则直线必过定点( )
A.B.C.D.
12.(2022·山西·运城市景胜中学高三阶段练习)已知点P在直线l:上,过点P作圆C:的切线,切点分别为A,B,则弦AB的最小值为( )
A.B.C.D.4
13..(2022·全国·高三专题练习)已知大圆与小圆相交于,两点,且两圆都与两坐标轴相切,则____
14.(2023·广东珠海·珠海市第一中学校考模拟预测)已知圆,点,若圆M上存在两点B,C,使得是等边三角形,则实数的取值范围是( )
A.B.C.D.
一般情况下,过定点
直线系:
过A1x+B1y+C1=0与A2x+B2y+C2=0的交点的直线可设:A1x+B1y+C1+λ(A2x+B2y+C2)=0.
如果两条直线都有参数,则两条直线可能存在“动态”垂直。则直线交点必在定点线段为直径的圆上。
每一条直线都可以通过“直线系”得到直线过定点。
两条动直线如果所含参数字母是一致的,则可以分别求出各自斜率,通过斜率之积是否是-1,确定两条直线是否互相“动态垂直”。
如果两条动直线“动态垂直”,则两直线交点必在两条直线所过定点为直径的圆上。
如果两条动直线交点在对应的两直线所过定点为直径的圆上,则可以通过设角,三角代换,进行线段的最值求解计算
圆的动切线:
到直线系距离,每条直线的距离
,
直线系表示圆的切线集合,
直线与圆的位置关系:
(1)几何法:利用圆心到直线的距离d和圆半径r的大小关系:dr⇔相离.
(2)代数法:利用判别式Δ=b2-4ac进行判断:Δ>0⇔相交;Δ=0⇔相切;Δ0⇔相交;Δ=0⇔相切;Δ
相关试卷
这是一份2024年新高考数学题型全归纳讲义第一讲基本不等式归类(原卷版+解析),共47页。
这是一份2024年新高考数学题型全归纳讲义第二十二讲求曲线方程和动点轨迹归类(原卷版+解析),共48页。
这是一份2024年新高考数学题型全归纳讲义第二十三讲圆锥曲线离心率归类(原卷版+解析),共71页。