年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    专题16 反比例函数与几何图形综合题(与面积、其他有关)-备战2024年中考数学一轮复习重难题型(全国通用)

    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题16 反比例函数与几何图形综合题(与面积、其他有关)(原卷版).docx
    • 解析
      专题16 反比例函数与几何图形综合题(与面积、其他有关)(解析版).docx
    专题16 反比例函数与几何图形综合题(与面积、其他有关)(原卷版)第1页
    专题16 反比例函数与几何图形综合题(与面积、其他有关)(原卷版)第2页
    专题16 反比例函数与几何图形综合题(与面积、其他有关)(原卷版)第3页
    专题16 反比例函数与几何图形综合题(与面积、其他有关)(解析版)第1页
    专题16 反比例函数与几何图形综合题(与面积、其他有关)(解析版)第2页
    专题16 反比例函数与几何图形综合题(与面积、其他有关)(解析版)第3页
    还剩17页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题16 反比例函数与几何图形综合题(与面积、其他有关)-备战2024年中考数学一轮复习重难题型(全国通用)

    展开

    这是一份专题16 反比例函数与几何图形综合题(与面积、其他有关)-备战2024年中考数学一轮复习重难题型(全国通用),文件包含专题16反比例函数与几何图形综合题与面积其他有关原卷版docx、专题16反比例函数与几何图形综合题与面积其他有关解析版docx等2份试卷配套教学资源,其中试卷共91页, 欢迎下载使用。
    2、学会运用数形结合思想。数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。
    3、要学会抢得分点。一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。
    4、学会运用等价转换思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
    5、学会运用分类讨论的思想。如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
    6、转化思想:体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。
    专题16反比例函数与几何图形综合题
    (与面积、其他有关)
    类型一与面积有关
    1.(2023·四川遂宁·统考中考真题)如图,一次函数的图像与反比例函数的图像交于,两点.(,,为常数)

    (1)求一次函数和反比例函数的解析式;
    (2)根据图像直接写出不等式的解集;
    (3)为轴上一点,若的面积为,求点的坐标.
    【答案】(1);;(2)或;(3)或
    【分析】(1)利用待定系数法即可求出函数解析式;
    (2)根据图像位置关系即可得解;
    (3)设,当点P在直线下方时,画出图形,根据关系列方程,然后解方程即可得解,同理,当点P在直线上方时,画出图形,根据列方程求解即可.
    【详解】(1)解:将点代入得,
    ∴,
    ∴反比例函数的解析式为;
    将点代入得,
    ∴,
    将点、分别代入得,
    解得,
    ∴一次函数的解析式为;
    (2)根据图像可知,当时,直线在反比例函数图像的上方,满足,
    ∴不等式的解集为或;
    (3)如图过点作轴平行线与交于点,分别过点,作直线垂线,垂足分别为点、,
    设,则,
    ∴,
    则,




    ∵的面积为,
    ∴,
    ∴,
    即点的坐标为.

    如图,过作轴于点,过作轴于点,设,

    由(1)得:,,
    ∴,,
    ∴,,,



    ∴,
    即点的坐标为,
    综上所述:或.
    【点睛】本题考查反比例函数与一次函数综合、待定系数法求函数解析式、利用图像解不等式、坐标与图形等知识,掌握反比例函数与一次函数图像与性质是解题关键.
    2.(2023·江西·统考中考真题)如图,已知直线与反比例函数的图象交于点,与y轴交于点B,过点B作x轴的平行线交反比例函数的图象于点C.

    (1)求直线和反比例函数图象的表达式;
    (2)求的面积.
    【答案】(1)直线的表达式为,反比例函数的表达式为;(2)6
    【分析】(1)利用待定系数法求函数解析式即可;
    (2)由一次函数解析式求得点B的坐标,再根据轴,可得点C的纵坐标为1,再利用反比例函数表达式求得点C坐标,即可求得结果.
    【详解】(1)解:∵直线与反比例函数的图象交于点,
    ∴,,即,
    ∴直线的表达式为,反比例函数的表达式为.
    (2)解:∵直线的图象与y轴交于点B,
    ∴当时,,
    ∴,
    ∵轴,直线与反比例函数的图象交于点C,
    ∴点C的纵坐标为1,
    ∴,即,
    ∴,
    ∴,
    ∴.
    【点睛】本题考查用待定系数法求一次函数和反比例函数解析式、一次函数与反比例函数的交点、一次函数与y轴的交点,熟练掌握用待定系数法求函数解析式是解题的关键.
    3.(2023·湖南岳阳·统考中考真题)如图,反比例函数(为常数,)与正比例函数(为常数,)的图像交于两点.

    (1)求反比例函数和正比例函数的表达式;
    (2)若y轴上有一点的面积为4,求点的坐标.
    【答案】(1);;(2)或
    【分析】(1)把分别代入函数的解析式,计算即可.
    (2)根据反比例函数的中对称性质,得到,设,根据,列式计算即可.
    【详解】(1)∵反比例函数(为常数,)与正比例函数(为常数,)的图像交于两点,
    ∴,
    解得,
    故反比例函数的表达式为,正比例函数的表达式.
    (2)∵反比例函数(为常数,)与正比例函数(为常数,)的图像交于两点,
    根据反比例函数图象的中心对称性质,
    ∴,设,
    根据题意,得,
    ∴,
    解得或,
    故点C的坐标为或.
    【点睛】本题考查了反比例函数与正比例函数的综合,反比例函数的中心对称性,三角形面积的特殊坐标表示法,熟练掌握反比例函数与正比例函数的综合,反比例函数的中心对称性是解题的关键.
    4.(2022·山东泰安)如图,点A在第一象限,轴,垂足为C,,,反比例函数的图像经过的中点B,与交于点D.
    (1)求k值;(2)求的面积.
    【答案】(1)2(2)
    【分析】(1)在中,,,再结合勾股定理求出,,得到,再利用中点坐标公式即可得出,求出值即可;
    (2)在平面直角坐标系中求三角形面积,找平行于坐标轴的边为底,根据轴,选择为底,利用代值求解即可得出面积.
    (1)解:根据题意可得,
    在中,,,


    ,,

    的中点是B,


    (2)解:当时,,



    【点睛】本题考查反比例函数的图像与性质,涉及到勾股定理,三角函数求线段长,中点坐标公式、待定系数法确定函数关系式中的,平面直角坐标系中三角形面积的求解,熟练掌握反比例函数的图像与性质是解决问题的关键.
    5.(2023·山东东营·统考中考真题)如图,在平面直角坐标系中,一次函数与反比例函数交于,两点,与y轴交于点C,连接,.

    (1)求反比例函数和一次函数的表达式;
    (2)求的面积;
    (3)请根据图象直接写出不等式的解集.
    【答案】(1),;(2)9;(3)或
    【分析】(1)把点B代入反比例函数,即可得到反比例函数的解析式;把点A代入反比例函数,即可求得点A的坐标;把点A、B的坐标代入一次函数一次函数即可求得a、b的值,从而得到一次函数的解析式;
    (2)的面积是和的面积之和,利用面积公式求解即可;
    (3)利用图象,找到反比例函数图象在一次函数图象下方所对应的x的范围,直接得出结论.
    【详解】(1)∵点在反比例函数的图象上,
    ∴,
    解得:
    ∴反比例函数的表达式为.
    ∵在反比例函数的图象上,
    ∴,
    解得,(舍去).
    ∴点A的坐标为.
    ∵点A,B在一次函数的图象上,
    把点,分别代入,得,
    解得,
    ∴一次函数的表达式为;
    (2)∵点C为直线与y轴的交点,
    ∴把代入函数,得
    ∴点C的坐标为
    ∴,


    (3)由图象可得,不等式的解集是或.

    【点睛】此题是反比例函数与一次函数的交点问题,考查了待定系数法求函数的解析式,三角形面积,函数与不等式的关系,求出两个函数解析式是解本题的关键.
    6.(2022·四川泸州)如图,直线与反比例函数的图象相交于点,,已知点的纵坐标为6
    (1)求的值;(2)若点是轴上一点,且的面积为3,求点的坐标.
    【答案】(1)b=9 (2)C(4,0),或C(8,0)
    【分析】(1)把y=6代入得到x=2,得到A(2,6),把A(2,6)代入,得到b=9;
    (2)解方程组,得到 x=2(舍去),或x=4,,得到B(4,3),设C(x,0),直线与x轴交点为D,过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,得到AE=6,BF=4,根据时,x=6,得到D(6,0),推出,根据=3,求得x=3,或x=9,得到C(4,0),或C(8,0).
    (1)解:∵直线与反比例函数的图象相交于点A,B,点A的纵坐标为6,
    ∴,x=2,
    ∴A(2,6),
    ∴,b=9;
    (2),即,
    ∴x=2(舍去),或x=4,
    ∴,
    ∴B(4,3),
    设C(x,0),直线与x轴交点为D,过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F,
    则AE=6,BF=3,
    时,x=6,
    ∴D(6,0),
    ∴,


    ∵,
    ∴,,
    ∴x=4,或x=8,
    ∴C(4,0),或C(8,0).
    【点睛】本题主要考查了一次函数和反比例函数,三角形面积,解决问题的关键是熟练掌握一次函数和反比例函数的性质,待定系数法求函数解析式,三角形面积计算公式.
    7.(2023·山东枣庄·统考中考真题)如图,一次函数的图象与反比例函数的图象交于两点.

    (1)求一次函数的表达式,并在所给的平面直角坐标系中画出这个一次函数的图象;
    (2)观察图象,直接写出不等式的解集;
    (3)设直线与x轴交于点C,若为y轴上的一动点,连接,当的面积为时,求点P的坐标.
    【答案】(1),图见解析;(2)或;(3)或
    【分析】(1)先根据反比例函数的解析式,求出的坐标,待定系数法,求出一次函数的解析式即可,连接,画出一次函数的图象即可;
    (2)图象法求出不等式的解集即可;
    (3)分点在轴的正半轴和负半轴,两种情况进行讨论求解.
    【详解】(1)解:∵一次函数的图象与反比例函数的图象交于两点,
    ∴,
    ∴,
    ∴,
    ∴,解得:,
    ∴,
    图象如图所示:

    (2)解:由图象可知:不等式的解集为或;
    (3)解:当点在轴正半轴上时:

    设直线与轴交于点,
    ∵,
    当时,,当时,,
    ∴,
    ∴,
    ∴,
    解得:;
    ∴;
    当点在轴负半轴上时:



    解得:或(不合题意,舍去);
    ∴.
    综上:或.
    【点睛】本题考查一次函数与反比例函数的综合应用.正确的求出函数解析式,利用数形结合和分类讨论的思想进行求解,是解题的关键.
    8.(2022·四川乐山)如图,己知直线1:y=x+4与反比例函数y=(x

    相关试卷

    专题13 一次函数与几何图形综合题(函数与面积、与其他有关)-备战2024年中考数学一轮复习重难题型(全国通用):

    这是一份专题13 一次函数与几何图形综合题(函数与面积、与其他有关)-备战2024年中考数学一轮复习重难题型(全国通用),文件包含专题13一次函数与几何图形综合题函数与面积与其他有关原卷版docx、专题13一次函数与几何图形综合题函数与面积与其他有关解析版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。

    专题03【填空压轴】几何综合题(与函数有关、几何最值、与旋转有关、满足特定条件、其他问题)-备战2024年中考数学一轮复习重难题型(全国通用):

    这是一份专题03【填空压轴】几何综合题(与函数有关、几何最值、与旋转有关、满足特定条件、其他问题)-备战2024年中考数学一轮复习重难题型(全国通用),文件包含专题03填空压轴几何综合题与函数有关几何最值与旋转有关满足特定条件其他问题原卷版docx、专题03填空压轴几何综合题与函数有关几何最值与旋转有关满足特定条件其他问题解析版docx等2份试卷配套教学资源,其中试卷共78页, 欢迎下载使用。

    专题24 二次函数与几何图形综合题(与圆有关问题)-备战2024年中考数学重难题型(全国通用):

    这是一份专题24 二次函数与几何图形综合题(与圆有关问题)-备战2024年中考数学重难题型(全国通用),文件包含专题24二次函数与几何图形综合题与圆有关问题原卷版docx、专题24二次函数与几何图形综合题与圆有关问题解析版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map