所属成套资源:备战2024年中考数学一轮复习重难题型(全国通用)
- 专题09 函数的实际应用(行程问题、最优方案、阶梯费用)-备战2024年中考数学一轮复习重难题型(全国通用) 试卷 0 次下载
- 专题10 函数的实际应用(利润最值、抛物线型、几何图形)-备战2024年中考数学一轮复习重难题型(全国通用) 试卷 0 次下载
- 专题12 一次函数与几何图形综合题(函数与三角形、函数与平行四边形、最值问题)-备战2024年中考数学一轮复习重难题型(全国通用) 试卷 0 次下载
- 专题13 一次函数与几何图形综合题(函数与面积、与其他有关)-备战2024年中考数学一轮复习重难题型(全国通用) 试卷 0 次下载
- 专题14 反比例函数性质综合-备战2024年中考数学一轮复习重难题型(全国通用) 试卷 0 次下载
专题11 一次函数性质综合-备战2024年中考数学一轮复习重难题型(全国通用)
展开
这是一份专题11 一次函数性质综合-备战2024年中考数学一轮复习重难题型(全国通用),文件包含专题11一次函数性质综合原卷版docx、专题11一次函数性质综合解析版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
2、学会运用数形结合思想。数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。
3、要学会抢得分点。一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。
4、学会运用等价转换思想。在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
5、学会运用分类讨论的思想。如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
6、转化思想:体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。
专题11一次函数性质综合
1.(2023·四川乐山·统考中考真题)下列各点在函数图象上的是( )
A.B.C.D.
2.(2022·四川眉山)一次函数的值随的增大而增大,则点所在象限为( )
A.第一象限B.第二象限C.第三象限D.第四象限
3.(2023·内蒙古·统考中考真题)在平面直角坐标系中,将正比例函数的图象向右平移3个单位长度得到一次函数的图象,则该一次函数的解析式为( )
A.B.C.D.
4.(2022·江苏扬州)在平面直角坐标系中,点P(﹣3,a2+1)所在的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
5.(2022·湖南株洲)在平面直角坐标系中,一次函数的图象与轴的交点的坐标为( )
A.B.C.D.
6.(2022·湖南娄底)将直线向上平移2个单位,相当于( )
A.向左平移2个单位 B.向左平移1个单位 C.向右平移2个单位 D.向右平移1个单位
7.(2023·新疆·统考中考真题)一次函数的图象不经过( )
A.第一象限B.第二象限C.第三象限D.第四象限
8.(2023·甘肃武威·统考中考真题)若直线(是常数,)经过第一、第三象限,则的值可为( )
A.B.C.D.2
9.(2022·浙江杭州)如图,在平面直角坐标系中,已知点P(0,2),点A(4,2).以点P为旋转中心,把点A按逆时针方向旋转60°,得点B.在,,,四个点中,直线PB经过的点是( )
A.B.C.D.
10.(2023·山东临沂·统考中考真题)对于某个一次函数,根据两位同学的对话得出的结论,错误的是( )
A.B.C.D.
11.(2022·湖南邵阳)在直角坐标系中,已知点,点是直线上的两点,则,的大小关系是( )
A.B.C.D.
12.(2023·内蒙古通辽·统考中考真题)在平面直角坐标系中,一次函数的图象是( )
A. B. C.D.
13.(2022·浙江绍兴)已知为直线上的三个点,且,则以下判断正确的是( ).
A.若,则B.若,则
C.若,则D.若,则
14.(2022·浙江嘉兴)已知点,在直线(k为常数,)上,若的最大值为9,则c的值为( )
A.B.2C.D.1
15.(2021·江苏苏州市·中考真题)已知点,在一次函数的图像上,则与的大小关系是( )
A.B.C.D.无法确定
16.(2021·湖南邵阳市·中考真题)在平面直角坐标系中,若直线不经过第一象限,则关于的方程的实数根的个数为( )
A.0个B.1个C.2个D.1或2个
17.(2020•凉山州)若一次函数y=(2m+1)x+m﹣3的图象不经过第二象限,则m的取值范围是( )
A.m>−12B.m<3C.−12<m<3D.−12<m≤3
18.(2020•湖州)已知在平面直角坐标系xOy中,直线y=2x+2和直线y=23x+2分别交x轴于点A和点B.则下列直线中,与x轴的交点不在线段AB上的直线是( )
A.y=x+2B.y=2x+2C.y=4x+2D.y=233x+2
19.(2020·湖南湘西?中考真题)已知正比例函数的图象与反比例函数的图象相交于点,下列说法正确的是( )
A.正比例函数的解析式是
B.两个函数图象的另一交点坐标为
C.正比例函数与反比例函数都随x的增大而增大
D.当或时,
20.(2020·江苏泰州?中考真题)点在函数的图像上,则代数式的值等于( )
A.B.C.D.
21.(2023·湖北荆州·统考中考真题)如图,直线分别与轴,轴交于点,,将绕着点顺时针旋转得到,则点的对应点的坐标是( )
A.B.C.D.
22.(2020·四川凉山?中考真题)已知一次函数y =(2m+1)x+m-3的图像不经过第二象限,则m的取值范围( )
A.m>-B.m
相关试卷
这是一份专题29 综合与实践-备战2024年中考数学重难题型(全国通用),文件包含专题29综合与实践原卷版docx、专题29综合与实践解析版docx等2份试卷配套教学资源,其中试卷共93页, 欢迎下载使用。
这是一份专题28 圆的综合探究-备战2024年中考数学重难题型(全国通用),文件包含专题28圆的综合探究原卷版docx、专题28圆的综合探究解析版docx等2份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。
这是一份专题17 二次函数性质综合-备战2024年中考数学重难题型(全国通用),文件包含专题17二次函数性质综合原卷版docx、专题17二次函数性质综合解析版docx等2份试卷配套教学资源,其中试卷共60页, 欢迎下载使用。