搜索
    上传资料 赚现金
    英语朗读宝

    【中考专题】贵州省中考数学模拟考试 A卷(含答案及详解)

    【中考专题】贵州省中考数学模拟考试 A卷(含答案及详解)第1页
    【中考专题】贵州省中考数学模拟考试 A卷(含答案及详解)第2页
    【中考专题】贵州省中考数学模拟考试 A卷(含答案及详解)第3页
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【中考专题】贵州省中考数学模拟考试 A卷(含答案及详解)

    展开

    这是一份【中考专题】贵州省中考数学模拟考试 A卷(含答案及详解),共34页。试卷主要包含了如图,有三块菜地△ACD等内容,欢迎下载使用。
    考生注意:
    1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
    2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
    3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
    第I卷(选择题 30分)
    一、单选题(10小题,每小题3分,共计30分)
    1、二次函数 的图像如图所示, 现有以下结论: (1) : (2) ; (3), (4) ; (5) ; 其中正确的结论有( )
    A.2 个B.3 个C.4 个D.5 个.
    2、如图,在中,,点D是BC上一点,BD的垂直平分线交AB于点E,将沿AD折叠,点C恰好与点E重合,则等于( )
    A.19°B.20°C.24°D.25°
    3、如图,AD为的直径,,,则AC的长度为( )
    A.B.C.4D.
    4、下列不等式中,是一元一次不等式的是( )
    A.B.C.D.
    5、如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交,边于,点,若点为边的中点,点为线段上一动点,则周长的最小值为( )
    A.B.C.D.
    6、如图,是的切线,B为切点,连接,与交于点C,D为上一动点(点D不与点C、点B重合),连接.若,则的度数为( )
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    A.B.C.D.
    7、如图,在梯形中,ADBC,过对角线交点的直线与两底分别交于点,下列结论中,错误的是( )
    A.B.C.D.
    8、如图,有三块菜地△ACD、△ABD、△BDE分别种植三种蔬菜,点D为AE与BC的交点,AD平分∠BAC,AD=DE,AB=3AC,菜地△BDE的面积为96,则菜地△ACD的面积是( )
    A.24B.27C.32D.36
    9、如图,①,②,③,④可以判定的条件有( ).
    A.①②④B.①②③C.②③④D.①②③④
    10、如图是由4个相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是( )
    A.B.C.D.
    第Ⅱ卷(非选择题 70分)
    二、填空题(5小题,每小题4分,共计20分)
    1、如图,△ABC,△FGH中,D,E两点分别在AB,AC上,F点在DE上,G,H两点在BC上,且DE∥BC,FG∥AB,FH∥AC,若BG:GH:HC=4:6:5,△FGH的面积是4,则△ADE的面积是______.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    2、下列各数①-2.5,②0,③,④,⑤,⑥-0.52522252225…,是无理数的序号是______.
    3、两个相似多边形的周长比是3:4,其中较小的多边形的面积为,则较大的多边形的面积为______cm2.
    4、如图,Rt △ABC,∠B=90∘,∠BAC=72°,过C作CF∥AB,联结 AF 与 BC 相交于点 G,若 GF=2AC,则 ∠BAG=_____________°.
    5、如图,在面积为48的等腰中,,,P是BC边上的动点,点P关于直线AB、AC的对称点外别为M、N,则线段MN的最大值为______.
    三、解答题(5小题,每小题10分,共计50分)
    1、如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,求证:BE(AC﹣AB).
    2、如图, 已知在 Rt 中, , 点 为射线 上一动点, 且 , 点 关于直线 的对称点为点 , 射线 与射线 交于点 .
    (1)当点 在边 上时,
    ① 求证: ;
    ②延长 与边 的延长线相交于点 , 如果 与 相似,求线段 的长;
    (2)联结 , 如果 , 求 的值.
    3、定义:若图形与图形有且只有两个公共点,则称图形与图形互为“双联图形”,即图形是图形的“双联图形”,图形是图形的“双联图形”.
    (1)如图1,在平面直角坐标系中,的半径为2,下列函数图象中与互为“双联图形”的是________(只需填写序号);
    ①直线;②双曲线;③抛物线.
    (2)若直线与抛物线互为“双联图形”,且直线不是双曲线的“双联图形”,求实数的取值范围;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    (3)如图2,已知,,三点.若二次函数的图象与互为“双联图形”,直接写出的取值范围.
    4、如图,在中,,将绕点C旋转得到,连接AD.
    (1)如图1,点E恰好落在线段AB上.
    ①求证:;
    ②猜想和的关系,并说明理由;
    (2)如图2,在旋转过程中,射线BE交线段AC于点F,若,,求CF的长.
    5、阅读理解题
    在求两位数乘两位数时,可以用“列竖式”的方法进行速算,例如:
    你能理解上述三题的解题思路吗?理解了,请完成:如图给出了部分速算过程,可得 , , , , , .
    -参考答案-
    一、单选题
    1、C
    【分析】
    由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
    【详解】
    解:(1)∵函数开口向下,∴a<0,∵对称轴在y轴的右边,∴,∴b>0,故命题正确;
    (2)∵a<0,b>0,c>0,∴abc<0,故命题正确;
    (3)∵当x=-1时,y<0,∴a-b+c<0,故命题错误;
    (4)∵当x=1时,y>0,∴a+b+c>0,故命题正确;
    (5)∵抛物线与x轴于两个交点,∴b2-4ac>0,故命题正确;
    故选C.
    【点睛】
    本题考查了二次函数图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.
    2、B
    【分析】
    根据垂直平分线和等腰三角形性质,得;根据三角形外角性质,得;根据轴对称的性质,得,,;根据补角的性质计算得· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ,根据三角形内角和的性质列一元一次方程并求解,即可得到答案.
    【详解】
    ∵BD的垂直平分线交AB于点E,



    ∵将沿AD折叠,点C恰好与点E重合,
    ∴,,





    故选:B.
    【点睛】
    本题考查了轴对称、三角形内角和、三角形外角、补角、一元一次方程的知识;解题的关键是熟练掌握轴对称、三角形内角和、三角形外角的性质,从而完成求解.
    3、A
    【分析】
    连接CD,由等弧所对的圆周角相等逆推可知AC=DC,∠ACD=90°,再由勾股定理即可求出.
    【详解】
    解:连接CD

    ∴AC=DC
    又∵AD为的直径
    ∴∠ACD=90°



    故答案为:A.
    【点睛】
    本题考查了圆周角的性质以及勾股定理,当圆中出现同弧或等弧时,常常利用弧所对的圆周角或圆心角,通过相等的弧把角联系起来,直径所对的圆周角是90°.
    4、B
    【分析】
    根据一元一次不等式的定义,只要含有一个未知数,并且未知数的次数是1的不等式就可以.
    【详解】
    A、不等式中含有两个未知数,不符合题意;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    B、符合一元一次不等式的定义,故符合题意;
    C、没有未知数,不符合题意;
    D、未知数的最高次数是2,不是1,故不符合题意.
    故选:B
    【点睛】
    本题考查一元一次不等式的定义,掌握其定义是解决此题关键.
    5、C
    【分析】
    连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.
    【详解】
    解:连接AD,
    ∵△ABC是等腰三角形,点D是BC边的中点,
    ∴AD⊥BC,
    ∴,解得AD=10,
    ∵EF是线段AC的垂直平分线,
    ∴点C关于直线EF的对称点为点A,
    ∴AD的长为CM+MD的最小值,
    ∴△CDM的周长最短=CM+MD+CD=AD+.
    故选:C.
    【点睛】
    本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
    6、B
    【分析】
    如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.
    【详解】
    解:如图:连接OB,
    ∵是的切线,B为切点
    ∴∠OBA=90°

    ∴∠COB=90°-42°=48°
    ∴=∠COB=24°.
    故选B.
    【点睛】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题的关键.
    7、B
    【分析】
    根据ADBC,可得△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,再利用相似三角形的性质逐项判断即可求解.
    【详解】
    解:∵ADBC,
    ∴△AOE∽△COF,△AOD∽△COB,△DOE∽△BOF,
    ∴,故A正确,不符合题意;
    ∵ADBC,
    ∴△DOE∽△BOF,
    ∴,
    ∴,
    ∴,故B错误,符合题意;
    ∵ADBC,
    ∴△AOD∽△COB,
    ∴,
    ∴,故C正确,不符合题意;
    ∴ ,
    ∴,故D正确,不符合题意;
    故选:B
    【点睛】
    本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质定理是解题的关键.
    8、C
    【分析】
    利用三角形的中线平分三角形的面积求得S△ABD=S△BDE=96,利用角平分线的性质得到△ACD与△ABD的高相等,进一步求解即可.
    【详解】
    解:∵AD=DE,S△BDE=96,
    ∴S△ABD=S△BDE=96,
    过点D作DG⊥AC于点G,过点D作DF⊥AB于点F,
    ∵AD平分∠BAC,
    ∴DG=DF,
    ∴△ACD与△ABD的高相等,
    又∵AB=3AC,
    ∴S△ACD=S△ABD=.
    故选:C.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    【点睛】
    本题考查了角平分线的性质,三角形中线的性质,解题的关键是灵活运用所学知识解决问题.
    9、A
    【分析】
    根据平行线的判定定理逐个排查即可.
    【详解】
    解:①由于∠1和∠3是同位角,则①可判定;
    ②由于∠2和∠3是内错角,则②可判定;
    ③①由于∠1和∠4既不是同位角、也不是内错角,则③不能判定;
    ④①由于∠2和∠5是同旁内角,则④可判定;
    即①②④可判定.
    故选A.
    【点睛】
    本题主要考查了平行线的判定定理,平行线的判定定理主要有:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果内错角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行.
    10、A
    【分析】
    根据几何体的三视图,是分别从几何体的正面、左面和上面看物体而得到的图形,对每个选项分别判断、解答.
    【详解】
    解:B是俯视图,C是左视图,D是主视图,
    故四个平面图形中A不是这个几何体的三视图.
    故选:A.
    【点睛】
    本题考查了简单组合体的三视图,掌握几何体的主视图、左视图和俯视图,是分别从几何体的正面、左面和上面看物体而得到的图形是解题的关键.
    二、填空题
    1、9
    【解析】
    【分析】
    只要证明△ADE∽△FGH,可得,由此即可解决问题.
    【详解】
    解:∵BG:GH:HC=4:6:5,可以假设BG=4k,GH=6k,HC=5k,
    ∵DE∥BC,FG∥AB,FH∥AC,
    ∴四边形BGFD是平行四边形,四边形EFHC是平行四边形,
    ∴DF=BG=4k,EF=HC=5k,DE=DF+EF=9k,∠FGH=∠B=∠ADE,∠FHG=∠C=∠AED,
    ∴△ADE∽△FGH,
    ∴.
    ∵△FGH的面积是4,
    ∴△ADE的面积是9,
    故答案为:9.
    【点睛】
    本题考查了相似三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    2、③
    【解析】
    【分析】
    根据无理数的定义逐个判断即可.
    【详解】
    解:-2.5,是分数;-0.52522252225…是无限循环小数,是有理数;0,是整数;无理数有,
    故答案为:③.
    【点睛】
    本题考查了无理数的定义,能熟记无理数的定义是解此题的关键,注意:无理数是指无限不循环小数,无理数包括三方面的数:①含π的,②开方开不尽的根式,③一些有规律的数.
    3、64
    【解析】
    【分析】
    根据相似多边形周长之比等于相似比,面积之比等于相似比的平方求出面积比,计算即可.
    【详解】
    解:∵两个相似多边形的周长比是3:4,
    ∴两个相似多边形的相似比是3:4,
    ∴两个相似多边形的面积比是9:16,
    ∵较小多边形的面积为36cm2,
    ∴较大多边形的面积为64cm2,
    故答案为:64.
    【点睛】
    本题考查了相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.
    4、24
    【解析】
    【分析】
    取FG的中点E,连接EC,根据直角三角形斜边上的中线等于斜边的一半可得EC=AC,从而可推出∠EAC=∠AEC=∠F+∠ECF=2∠F,已知,∠BAC=72°,则不难求得∠BAG的度数.
    【详解】
    解:如图,取FG的中点E,连接EC.
    ∵FC∥AB,
    ∴∠GCF=90°,
    ∴EC=FG=AC,
    ∴∠EAC=∠AEC=∠F+∠ECF=2∠F,
    设∠BAG=x,则∠F=x,
    ∵∠BAC=72°,
    ∴x+2x=72°,
    ∴x=24°,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴∠BAG=24°,
    故答案为:24.
    【点睛】
    本题考查了直角三角形斜边上的中线,平行线的性质以及角的计算,解题的关键是构造三个等腰三角形.直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半.
    5、19.2
    【解析】
    【分析】
    点P关于直线AB、AC的对称点分别为M、N,根据三角形三边关系可得,当点P与点B或点C重合时,P、M、N三点共线,MN最长,由轴对称可得,,再由三角形等面积法即可确定MN长度.
    【详解】
    解:如图所示:点P关于直线AB、AC的对称点分别为M、N,
    由图可得:,
    当点P与点B或点C重合时,如图所示,MN交AC于点F,此时P、M、N三点共线, MN最长,
    ∴,,
    ∵等腰面积为48,,
    ∴,

    ∴,
    故答案为:.
    【点睛】
    题目主要考查对称点的性质及三角形三边关系,三角形等面积法等,理解题意,根据图形得出三点共线时线段最长是解题关键.
    三、解答题
    1、见解析
    【分析】
    根据全等三角形的判定与性质,可得∠ABF=∠AFB,AB=AF,BE=EF,根据三角形外角的性质,可得∠C+∠CBF=∠AFB=∠ABF,根据角的和差、等量代换,可得∠CBF=∠C,根据等腰三角形的判定,可得BF=CF,根据线段的和差、等式的性质,可得答案
    【详解】
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    证明:如图:延长BE交AC于点F,
    ∵BF⊥AD,
    ∴∠AEB=∠AEF.
    ∵AD平分∠BAC
    ∴∠BAE=∠FAE
    在△ABE和△AFE中,
    ∴△ABE≌△AFE (ASA)
    ∴∠ABF=∠AFB, AB=AF, BE=EF
    ∵∠C+∠CBF=∠AFB=∠ABF
    ∴∠ABF+∠CBF=∠ABC=3∠C
    ∴∠C+2∠CBF=3∠C
    ∴∠CBF=∠C
    ∴BF=CF
    ∴BE=BF=CF
    ∵CF=AC-AF=AC-AB
    ∴BE= (AC-AB)
    【点睛】
    本题考查了等腰三角形的判定与性质,利用了全等三角形的判定与性质,三角形外角的性质,等量代换,等式的性质,利用等量代换得出∠CBF=∠C是解题关键
    2、
    (1)①见解析;②
    (2)3或4
    【分析】
    (1)① 如图1,连接CE,DE,根据题意,得到CB=CE=CA,利用等腰三角形的底角与顶角的关系,三角形外角的性质,可以证明;
    ②连接BE,交CD于定Q,利用三角形外角的性质,确定△DCB∽△BGE,利用相似,证明△ABG是等腰三角形,△ABE是等腰三角形,△BEF是等腰直角三角形,用BE表示GE,后用相似三角形的性质求解即可;
    (2)分点D在AB上和在AB的延长上,两种情形,运用等腰三角形的性质,勾股定理分别计算即可.
    (1)
    ① 如图1,连接CE,DE,
    ∵点B关于直线CD的对称点为点E,
    ∴CE=CB,BD=DE,∠ECD=∠BCD,∠ACE=90°-2∠ECD,
    ∵AC=BC,
    ∴AC=EC,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    ∴∠AEC=∠ACE,
    ∵2∠AEC=180°-∠ACE=180°-90°+2∠ECD,
    ∴∠AEC=45°+∠ECD,
    ∵∠AEC=∠AFC +∠ECD,
    ∴∠AEC=45°+∠ECD=∠AFC +∠ECD,
    ∴∠AFC=45°;
    ②连接BE,交CD于定Q,
    根据①得∠EAB =∠DCB,∠AFC=45°,
    ∵点B关于直线CD的对称点为点E,
    ∴∠EFC=∠BFC=45°,CF⊥BE,
    ∴BF⊥AG,△BEF是等腰直角三角形, BF=EF,
    ∵∠BEG>∠EAB,与 相似,
    ∴△DCB∽△BGE,
    ∴∠EAB =∠DCB=∠BGE,∠DBC=∠BEG=45°,
    ∴AB=BG,∠EAB+∠EBA=∠EAB+∠BGE,
    ∴∠EAB=∠EBA=∠BGE,
    ∴AE=BE=BF=EF,
    ∵BF⊥AG,
    ∴AF=FG=AE+EF=BE+EF=BE+BE=BE,
    ∴GE=EF+FG=BE+BE= BE,
    ∴=,
    ∵△DCB∽△BGE,
    ∴,
    ∴,
    ∴BD==,
    (2)
    过点C作CM⊥AE,垂足为M,
    根据①②知,△ACE是等腰三角形,△BEF是等腰直角三角形,
    ∴AM=ME,BF⊥AF,
    设AM=ME=x,CM=y,
    ∵AC=BC=5,∠ACB=90°,,
    ∴,AB=,xy=12,
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·

    ==49,
    ∴x+y=7或x+y=-7(舍去);

    ==1,
    ∴x-y=1或x-y=-1;
    ∴或
    ∴或
    ∴或
    ∴AE=8或AE=6,
    当点D在AB上时,如图3所示,AE=6,
    设BF=EF=m,
    ∴,
    ∴,
    解得m=1,m=-7(舍去),
    ∴=3;
    当点D在AB的延长线上时,如图4所示,AE=8,
    设BF=EF=n,
    ∴,
    ∴,
    解得n=1,n=7(舍去),
    ∴=4;
    ∴或.
    【点睛】
    本题考查了轴对称的性质,等腰直角三角形的判定性质,等腰三角形的判定和性质,完全平方公式,勾股定理,三角形相似的判定和性质,一元二次方程的解法,分类思想,熟练掌握勾股定理,三角形· · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    的相似,一元二次方程的解法是解题的关键.
    3、
    (1)①
    (2)的取值范围是
    (3)或
    【分析】
    (1)根据图形M与图形N是双联图形的定义可直接判断即可;
    (2)根据函数解析式联立方程,再根据“双联图形”的定义,由一元二次方程的判别式可得结论;
    (3)根据双联图形的宝座进行判断即可.
    (1)
    选项①的直线经过第一、二、三象限,且经过点(0,1)和(-1,0)
    又的半径为2,
    ∴这两个图形有且只有两个公共点,
    ∴这两个图形是“双联图形”;
    选项②的双曲线在第一、三象限与图1中的图象分别有两个公共点,一共有四个公共点,不符合“双联图形”的定义,
    故这两个图形不是“双联图形”;
    选项③的抛物线的顶点坐标渐(-1,2),并且开口方向向上,与图1中的图象没有公共点,
    故这两个图形不是“双联图形”;
    ∴选①
    故答案为①;
    (2)
    已知直线与抛物线有且只有两个公共点,
    ∴将代入抛物线中,得,
    配方得,
    ∵方程有实数解,
    ∴即
    又直线不是双曲线的“双联图形”,
    ∴直线与双曲线最多有一个公共点,
    即当时,代入得,,即,
    ∴实数的取值范围是;
    (3)
    ∵是二次函数,

    ∵二次函数的顶点坐标为(-1,3),且对称轴为直线x=-1,
    ∴当时,二次函数的图象与的图象没有交点,
    ∴不成立;
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 内 · · · · · · ○ · · · · · ·
    号学级年名姓
    · · · · · · 线 · · · · · · ○ · · · · · · 封 · · · · · · ○ · · · · · · 密 · · · · · · ○ · · · · · · 外 · · · · · · ○ · · · · · ·
    当时,二次函数的图象开口向下,为使它与互为双联图形,即有且只有两个公共点,
    ∴①当抛物线与AC和AB相交时,设直线BC的解析式为y=mx+n,
    把C(1,4),B(4,0)代入,得

    ∴,
    ∴y=-x+4,
    ∵抛物线与BC不想交,
    ∴,即ax2+(2a+1)x+a-1=0无实数根,
    ∴(2a+1)2-4a(a-1)

    相关试卷

    【中考专题】贵州省中考数学模拟真题练习 卷(Ⅱ)(含答案详解):

    这是一份【中考专题】贵州省中考数学模拟真题练习 卷(Ⅱ)(含答案详解),共25页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。

    【中考专题】湖南省怀化市中考数学模拟考试 A卷(含答案及详解):

    这是一份【中考专题】湖南省怀化市中考数学模拟考试 A卷(含答案及详解),共22页。试卷主要包含了如图,有三块菜地△ACD,如图,某汽车离开某城市的距离y等内容,欢迎下载使用。

    【中考专题】贵州省铜仁市中考数学备考模拟练习 (B)卷(含答案及详解):

    这是一份【中考专题】贵州省铜仁市中考数学备考模拟练习 (B)卷(含答案及详解),共23页。试卷主要包含了如图,,下列图形是全等图形的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map