|试卷下载
终身会员
搜索
    上传资料 赚现金
    新高考数学圆锥曲线62种题型第十一讲 圆锥曲线中的最值与范围问题(原卷版)
    立即下载
    加入资料篮
    新高考数学圆锥曲线62种题型第十一讲 圆锥曲线中的最值与范围问题(原卷版)01
    新高考数学圆锥曲线62种题型第十一讲 圆锥曲线中的最值与范围问题(原卷版)02
    新高考数学圆锥曲线62种题型第十一讲 圆锥曲线中的最值与范围问题(原卷版)03
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    新高考数学圆锥曲线62种题型第十一讲 圆锥曲线中的最值与范围问题(原卷版)

    展开
    这是一份新高考数学圆锥曲线62种题型第十一讲 圆锥曲线中的最值与范围问题(原卷版),共9页。

    题型一 最值问题
    角度1 基本不等式法求最值
    例1 (12分)(2023·青岛调研)已知椭圆Γ:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的离心率为eq \f(\r(6),3),左、右焦点分别为F1,F2,过F2作不平行于坐标轴的直线交Γ于A,B两点,且△ABF1的周长为4eq \r(6).
    (1)求Γ的方程;
    (2)若AM⊥x轴于点M,BN⊥x轴于点N,直线AN与BM交于点C,求△ABC面积的最大值.
    [满分规则]
    ❶得步骤分:
    由①②③准确运用椭圆定义,求出a,b,c可分别得1分,第一问共4分,由④联立椭圆和直线方程,写出根与系数关系式得1分,⑤设直线方程可得1分;
    ❷得关键分:
    由⑥联立两直线求出C点横坐标得2分,⑦表示△ABC面积得1分;
    ❸得计算分:
    由⑧通过根与系数关系化简面积表达式得1分,由⑨利用换元后,由基本不等式求出最值得3分.
    训练1 已知点A(0,-2),椭圆E:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的离心率为eq \f(\r(3),2),F是椭圆E的右焦点,直线AF的斜率为eq \f(2\r(3),3),O为坐标原点.
    (1)求E的方程;
    (2)设过点A的动直线l与E相交于P,Q两点,当△OPQ的面积最大时,求l的方程.
    角度2 函数法求最值
    例2 在平面直角坐标系中,O为坐标原点,圆O交x轴于点F1,F2,交y轴于点B1,B2,以B1,B2为顶点,F1,F2分别为左、右焦点的椭圆E恰好经过点eq \b\lc\(\rc\)(\a\vs4\al\c1(1,\f(\r(2),2))).
    (1)求椭圆E的标准方程;
    (2)设经过点(-2,0)的直线l与椭圆E交于M,N两点,求△F2MN的面积的最大值.
    感悟提升 圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.
    训练2 (2023·济南联考节选)已知抛物线C:y2=4x,F为焦点,点Q在直线
    x=-1上,点P是抛物线上一点,且P点在第一象限,满足FP⊥FQ,记直线OP,OQ,PQ的斜率分别为k1,k2,k3,求k1·k2·k3的最小值.
    题型二 范围问题
    例3 (2023·辽宁省六校联考)在平面直角坐标xOy中,已知抛物线C:y2=2px(p>0)的焦点与椭圆:eq \f(x2,2)+y2=1的右焦点重合.
    (1)求抛物线C的方程及其准线方程;
    (2)记P(4,0),若抛物线C上存在两点B,D,且直线BD的斜率存在,使△PBD为以P为顶点的等腰三角形,求直线BD的斜率的取值范围.
    故直线BD的斜率的取值范围为eq \b\lc\(\rc\)(\a\vs4\al\c1(-∞,-\f(\r(2),2)))∪eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(2),2),+∞)).
    感悟提升 解决圆锥曲线中的取值范围问题应考虑的五个方面
    (1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;
    (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;
    (3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;
    (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;
    (5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.
    训练3 (2023·武汉调研)过双曲线Γ:eq \f(x2,a2)-eq \f(y2,b2)=1(a>0,b>0)的左焦点F1的动直线l与Γ的左支交于A,B两点,设Γ的右焦点为F2.
    (1)若△ABF2可以是边长4的正三角形,求此时Γ的标准方程;
    (2)若存在直线l,使得AF2⊥BF2,求Γ的离心率的取值范围.
    课时训练
    一、单选题
    1.设点A,,的坐标分别为,,,动点满足:,给出下列四个结论:
    ① 点P的轨迹方程为;
    ② ;
    ③ 存在4个点P,使得的面积为;
    ④ .
    则正确结论的个数是( )
    A.1B.2C.3D.4
    2.设、分别是椭圆的左、右焦点,若是该椭圆上的一个动点,则的最大值和最小值分别为( )
    A.与B.与C.与D.与
    3.已知M,N是椭圆上关于原点O对称的两点,P是椭圆C上异于M,N的点,且的最大值是,则椭圆C的离心率是( )
    A.B.C.D.
    4.已知,,若圆上存在点P,使得,则实数r的取值范围是( )
    A.[3,5]B.(0,5]C.[4,5]D.[16,25]
    5.已知曲线:,为上一点,
    ①的取值范围为;
    ②的取值范围为;
    ③不存在点,使得;
    ④的取值范围为.
    则上述命题正确的个数是( )
    A.1个B.2个C.3个D.4个
    6.设双曲线:的离心率为,过左焦点作倾斜角为的直线依次交的左右两支于,,则有.若,为的中点,则直线斜率的最小值是( )
    A.B.C.D.
    7.已知是抛物线上的一个动点,则点到直线和的距离之和的最小值是( )
    A.3B.4C.D.6
    8.已知圆过点,且与直线相切,是圆心的轨迹上的动点,为直线上的动点,则的最小值为( )
    A.B.C.D.
    二、多选题
    9.已知双曲线的左,右焦点分别为,,点P是双曲线C的右支上一点,过点P的直线l与双曲线C的两条渐近线交于M,N,则( )
    A.的最小值为8
    B.若直线l经过,且与双曲线C交于另一点Q,则的最小值为6
    C.为定值
    D.若直线l与双曲线C相切,则点M,N的纵坐标之积为
    10.双曲线具有如下光学性质:从双曲线的一个焦点发出的光线,经双曲线反射后,反射光线的反向延长线经过双曲线的另一个焦点.由此可得,过双曲线上任意一点的切线平分该点与两焦点连线的夹角.已知,分别为双曲线的左,右焦点,过右支上一点作直线交轴于点,交轴于点,则( )
    A.的渐近线方程为B.
    C.过点作,垂足为,则D.四边形面积的最小值为
    三、解答题
    11.在平面直角坐标系中,已知,分别是椭圆C:的左焦点和右焦点.
    (1)设T是椭圆C上的任意一点,求取值范围;
    (2)设,直线l与椭圆C交于B,D两点,若是以A为直角顶点的等腰直角三角形,求直线l的方程.
    12.在平面直角坐标系中,已知椭圆C:.
    (1)设是椭圆上的一个动点,求的取值范围;
    (2)设与坐标轴不垂直的直线交椭圆于两点,试问:是否存在满足条件的直线,使得是以为直角顶点的等腰直角三角形?若存在,求出直线的方程,若不存在,请说明理由.
    13.已知抛物线与双曲线相交于两点是的右焦点,直线分别交于(不同于点),直线分别交轴于两点.
    (1)设,求证:是定值;
    (2)求的取值范围.
    14.已知双曲线:的离心率为;
    (1)求此双曲线的渐近线方程;
    (2)若经过点的直线与双曲线的右支交于不同两点,,求线段的中垂线在轴上的截距的取值范围;
    15.已知双曲线的方程为:,左右焦点分别为,是线段的中点,过点作斜率为的直线,l与双曲线的左支交于两点,连结与双曲线的右支分别交于两点.
    (1)设直线的斜率为,求的取值范围.
    (2)求证:直线过定点,并求出定点坐标.
    16.已知O为坐标原点,双曲线C:的渐近线方程为.
    (1)求C的标准方程;
    (2)过点的直线l交C于M,N两点,交x轴于Q点.若,问是否存在?若存在,求出的值;若不存在,请说明理由.
    17.双曲线的左顶点为,焦距为4,过右焦点作垂直于实轴的直线交于、两点,且是直角三角形.
    (1)求双曲线的方程;
    (2)、是右支上的两动点,设直线、的斜率分别为、,若,求点到直线的距离的取值范围.
    18.求抛物线:上的点到直线:的最小距离.
    19.如图,已知椭圆,抛物线,点A是椭圆与抛物线的一个交点,过点A的直线l交椭圆于点B,交抛物线于点M(B、M不同于A).
    (1)若抛物线的焦点是椭圆的一个焦点,求p的值;
    (2)若直线l过椭圆的右焦点,求面积的最大值及此时直线l的方程;
    (3)若存在不过原点的直线l使M为线段AB的中点,求p的最大值.
    20.已知为抛物线上不同两点,为坐标原点,,过作于,且点.
    (1)求直线的方程及抛物线的方程;
    (2)若直线与直线关于原点对称,为抛物线上一动点,求到直线的距离最短时,点的坐标.
    相关试卷

    专题30 圆锥曲线中的最值、范围问题: 这是一份专题30 圆锥曲线中的最值、范围问题,共140页。

    专题14 圆锥曲线常考题型02——圆锥曲线中的范围、最值问题 (解析版): 这是一份专题14 圆锥曲线常考题型02——圆锥曲线中的范围、最值问题 (解析版),共17页。

    高考圆锥曲线题型专题分析——第十一讲 圆锥曲线中的最值与范围问题(全国通用): 这是一份高考圆锥曲线题型专题分析——第十一讲 圆锥曲线中的最值与范围问题(全国通用),文件包含第十一讲圆锥曲线中的最值与范围问题教师版docx、第十一讲圆锥曲线中的最值与范围问题原卷版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map