- 第五章 三角函数(考点串讲课件)-2024-2025学年高一数学上学期期末重难点突破(人教A版2019) 课件 0 次下载
- 专题01 高一上期末真题精选(常考122题 29类考点专练) -2024-2025学年高一数学上学期期末重难点突破(人教A版2019) 试卷 0 次下载
- 专题02 高一上期末真题精选(压轴66题 7个考点专练)-2024-2025学年高一数学上学期期末重难点突破(人教A版2019) 试卷 0 次下载
- 专题02+常用逻辑用语(考点清单)-2024-2025学年高一数学上学期期末重难点突破(人教A版2019) 试卷 1 次下载
- 专题03 一元二次函数、方程和不等式(考点清单)-2024-2025学年高一数学上学期期末重难点突破(人教A版2019) 试卷 1 次下载
专题01 集合及其运算(考点清单)-2024-2025学年高一数学上学期期末重难点突破(人教A版2019)
展开\l "_Tc25122" 二、知识回归 PAGEREF _Tc25122 \h 2
\l "_Tc2001" 三、典型例题讲与练 PAGEREF _Tc2001 \h 4
考点清单 \l "_Tc18294" 01:元素与集合的关系 PAGEREF _Tc18294 \h 4
\l "_Tc13984" 【期末热考题型1】判断元素与集合的关系 PAGEREF _Tc13984 \h 4
\l "_Tc24135" 【期末热考题型2】分类讨论法解决元素与集合的关系问题 PAGEREF _Tc24135 \h 5
\l "_Tc18835" 【期末热考题型3】分类讨论法解决集合中元素的个数问题 PAGEREF _Tc18835 \h 5
\l "_Tc23513" 考点清单02:集合中元素的特性 PAGEREF _Tc23513 \h 6
\l "_Tc30649" 【期末热考题型1】集合中元素的特性 PAGEREF _Tc30649 \h 6
\l "_Tc32371" 考点清单03:集合的表示方法 PAGEREF _Tc32371 \h 7
\l "_Tc9189" 【期末热考题型1】强化描述法中一般元素代表 PAGEREF _Tc9189 \h 7
\l "_Tc27804" 考点清单04:集合之间的基本关系 PAGEREF _Tc27804 \h 7
\l "_Tc30079" 【期末热考题型1】子集(真子集)个数 PAGEREF _Tc30079 \h 7
\l "_Tc18226" 【期末热考题型2】根据集合包含关系求参数值或范围 PAGEREF _Tc18226 \h 8
\l "_Tc3253" 考点清单05:集合的基本运算 PAGEREF _Tc3253 \h 9
\l "_Tc19784" 【期末热考题型1】集合的综合运算 PAGEREF _Tc19784 \h 9
\l "_Tc21864" 【期末热考题型2】分类讨论法解决集合的运算结果求参数的取值范围 PAGEREF _Tc21864 \h 9
\l "_Tc10226" 考点清单06:集合的实际应用 PAGEREF _Tc10226 \h 11
\l "_Tc22086" 【期末热考题型1】图解决集合运算问题 PAGEREF _Tc22086 \h 11
一、思维导图
二、知识回归
知识回顾1:元素与集合
(1)集合元素的三大特性:确定性、互异性(解题注意回代检验集合元素互异性)、无序性.
(2)元素与集合的关系:属于()或不属于()
(3)集合的表示方法:列举法、描述法、(韦恩图法);注意描述法书写格式,一般元素代表,共同特征;
知识回顾2:集合间的基本关系
(1)子集:若对任意,都有,则或.
图表示:
(2)真子集:若,且集合中至少有一个元素不属于集合,则_.
图表示:
(3)相等:若,且,则.
(4)空集的性质:是任何集合的子集,是任何非空集合的真子集.
知识回顾3:集合的基本运算
(1)并集:一般地,由所有属于集合或属于集合的元素组成的集合称为集合与集合的并集,记作 (读作:并).记作:.
并集的性质:,,,,.
高频性质:若.
图形语言
(2)交集:一般地,由既属于集合又属于集合的所有元素组成的集合即由集合和集合的相同元素组成的集合,称为集合与集合的交集,记作(读作:交).记作:.
交集的性质:,,,,.
高频性质:若.
图形语言
(3)全集与补集:全集:在研究某些集合的时候,它们往往是某个给定集合的子集,这个给定的集合叫做全集,常用表示,全集包含所有要研究的这些集合.
补集:设是全集,是的一个子集(即),则由中所有不属于集合的元素组成的集合,叫做中子集的补集,记作 ,即.
补集的性质: , , .
知识回顾4:容斥原理
一般地,对任意两个有限集,
三、典型例题讲与练
01:元素与集合的关系
【期末热考题型1】判断元素与集合的关系
【解题方法】紧抓属于()和不属于()两个关系
【典例1】(2023上·广东广州·高三华南师大附中校考阶段练习)已知集合,则( )
A.B.C.D.
【典例2】(2023上·上海浦东新·高一上海南汇中学校考期中)非空集合具有下列性质:①若,,则;②若,,则,下列判断一定成立的序号是 .
(1) (2) (3)若,,则 (4)若,、则
【专训1-1】(2023上·广东惠州·高一校联考阶段练习)下列说法正确的有( )
①; ②; ③; ④; ⑤.
A.1个B.2个C.3个D.4个
【专训1-2】(多选)(2023上·贵州遵义·高一统考阶段练习)已知由实数组成的非空集合A满足:若,则.下列结论正确的是( ).
A.若,则
B.
C.A可能仅含有2个元素
D.A所含的元素的个数一定是
【期末热考题型2】分类讨论法解决元素与集合的关系问题
【解题方法】紧抓属于()和不属于()两个关系,同时注意检查集合元素的互异性
【典例1】(多选)(2023上·江苏盐城·高一江苏省响水中学校考阶段练习)已知集合,,则a的值为( ).
A.B.C.1D.
【典例2】(2023上·山东青岛·高一山东省青岛第五十八中学校考阶段练习)集合,若且,则的取值范围为 .
【专训1-1】62023上·上海松江·高一校考期中)已知集合,若,则实数的取值范围是 .
【期末热考题型3】分类讨论法解决集合中元素的个数问题
【解题方法】分类讨论+判别法
【典例1】(2023上·上海嘉定·高一校考期中)已知集合
(1)若A中只有一个元素,求a的值
(2)若A中至多有一个元素,求a的取值范围
(3)若,求a的取值范围
【典例2】(2023上·湖北武汉·高一武汉市第十七中学校考阶段练习)已知集合,求:
(1)当时,中至多只有个子集,求的取值范围;
(2)当、满足什么条件时,集合为空集.
【专训1-1】(2023上·辽宁沈阳·高一沈阳二十中校考阶段练习)已知集合,若A中只有一个元素,则实数m的取值集合为 .
【专训1-2】(2023·江苏·高一专题练习)已知集合中的元素满足,.
(1)若,求实数的值;
(2)若为单元素集合,求实数的值;
(3)若为双元素集合,求实数的取值范围.
02:集合中元素的特性
【期末热考题型1】集合中元素的特性
【解题方法】集合的互异性,确定性,无序性,特别注意互异性
【典例1】 (2022上·湖南邵阳·高一邵阳市第二中学校考阶段练习)已知,若集合,则的值为( )
A.B.1C.D.2
【典例2】(2023下·湖南岳阳·高一校考阶段练习)若集合,实数的值为
【专训1-1】(2023上·福建泉州·高一福建省南安市侨光中学校考阶段练习)若,则 .
【专训1-2】(2021上·江苏扬州·高一统考期中)已知集合,若,则实数的值构成的集合为 .
03:集合的表示方法
【期末热考题型1】强化描述法中一般元素代表
【解题方法】抓住集合表示方法的定义
【典例1】(2023·江苏·高一专题练习)集合A=用列举法表示为( )
A.B.
C.D.
【典例2】(2023上·上海徐汇·高一上海中学校考期中)集合可用列举法表示为 .
【专训1-1】(2023上·河南商丘·高一商丘市第一高级中学校联考期中)集合中的元素个数为 .
【专训1-2】(2023上·江西南昌·高一校考阶段练习)设集合,则集合 .
04:集合之间的基本关系
【期末热考题型1】子集(真子集)个数
【解题方法】可以用公式计算或者直接列举
【典例1】(2023上·重庆渝北·高一重庆市松树桥中学校校考阶段练习)设集合,集合,若,则实数取值集合的真子集的个数为( )
A.2B.3C.7D.8
【典例2】(2023上·广东湛江·高三统考阶段练习)已知集合,则的真子集的个数为( )
A.1B.2C.3D.4
【专训1-1】(2023上·广东广州·高一校考期中)设A,B是全集的子集,,则满足的的个数是( )
A.14B.15C.16D.17
【专训1-2】(2023上·天津河东·高一天津市第四十五中学校考阶段练习)设集合,则图中阴影部分表示的集合的真子集个数为 .
【期末热考题型2】根据集合包含关系求参数值或范围
【解题方法】数轴法,列举法,注意不要忽视空集
【典例1】(2023上·江西赣州·高一赣州市第三中学校联考期中)若集合,,且,则的取值范围是( )
A.B.
C.D.
【典例2】(2023上·北京·高一校考期中)设全集,集合,,集合.
(1)若 求和;
(2)若,求的取值范围.
【专训1-1】(多选)(2023上·湖北省直辖县级单位·高一校考期中)已知集合,,若,则实数的值可以为( )
A.2B.1C.0D.-1
【专训1-2】(2023·江苏·高一专题练习)已知集合,,若BA,求实数m的取值范围.
05:集合的基本运算
【期末热考题型1】集合的综合运算
【解题方法】并交补定义
【典例1】(2023上·江苏苏州·高一江苏省苏州第十中学校校考阶段练习)设集合,集合,,则( )
A.B.C.D.
【典例2】(2022上·山东聊城·高一校考阶段练习)已知集合,集合,.求:
(1);
(2).
【专训1-1】(2023上·江西抚州·高一统考期中)已知集合,,则( )
A.B.
C.D.
【专训1-2】(2023上·江苏南京·高一南京市第十三中学校考期中)设全集,集合,,则( )
A.B.
C.D.
【期末热考题型2】分类讨论法解决集合的运算结果求参数的取值范围
【解题方法】根据集合运算结果,推出包含关系,借助数轴或通过列举求参数
【典例1】(2023上·河南南阳·高一校考阶段练习)已知集合.
(1)若,求,及
(2)若,求实数m的取值范围.
【典例2】(2023上·北京西城·高一北师大实验中学校考期中)已知集合,.
(1)若,求;
(2)请在条件①、条件②、条件③这三个条件中选择一个作为已知,使得至少存在一个实数a满足该条件,并求出a的范围.
①;②;③.
注:如果选择多个符合要求的条件分别解答,按第一个解答计分.
【专训1-1】(2023上·江苏无锡·高一江苏省梅村高级中学校考期中)已知集合,.
(1)当时,求集合;
(2)若,求实数的取值范围.
【专训1-2】(2023上·广东湛江·高一统考期中)已知集合.
(1)在①,②,③三个条件中任选一个,作为下面问题的条件,并解答.
问题:当集合满足______时,求的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.
(2)若,求的取值范围.
06:集合的实际应用
【期末热考题型1】图解决集合运算问题
【解题方法】利用图解
【典例1】(2023上·辽宁·高一校联考阶段练习)杭州第19届亚运会于2023年9月23日至10月8日举行,经调查,亚运会中球类、田径类、游泳类比赛深受学生喜爱.小明统计了其所在班级50名同学观看球类、田径类、游泳类比赛情况,每人至少观看过其中一类比赛,有15人观看过这3类比赛,18人没观看过球类比赛,20人没观看过田径类比赛,16人没观看过游泳类比赛,因不慎将观看过其中两类比赛的人的数据丢失,记为,则由上述可推断出( )
A.16B.17C.18D.19
【典例2】(2021上·江苏徐州·高一徐州市第七中学校考期中)学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛,同时参加由径和球类比赛的有 人?只参加游泳一项比赛的有 人?
【专训1-1】(多选)(2022上·全国·高一阶段练习)对于集合,,我们把集合且,叫作集合和的差集,记作,例如:,,则有,,下列解答正确的是( )
A.已知,,则
B.已知或,,则或
C.如果,那么
D.已知全集、集合、集合关系如上图中所示,则.
【专训1-2】(2023上·北京·高一北京市八一中学校考阶段练习)1881年英国数学家约翰•维恩发明了Venn图,用来直观表示集合之间的关系.全集,集合的关系如图所示,其中区域I,II构成,区域II,III构成.若区域I,II,III表示的集合均不是空集,则实数的取值范围是 .
专题08 函数的应用(一)(考点清单)-2024-2025学年高一数学上学期期末重难点突破(人教A版2019): 这是一份专题08 函数的应用(一)(考点清单)-2024-2025学年高一数学上学期期末重难点突破(人教A版2019),文件包含专题08函数的应用一考点清单原卷版docx、专题08函数的应用一考点清单解析版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。
专题07 对数与对数函数(考点清单)-2024-2025学年高一数学上学期期末重难点突破(人教A版2019): 这是一份专题07 对数与对数函数(考点清单)-2024-2025学年高一数学上学期期末重难点突破(人教A版2019),文件包含专题07对数与对数函数考点清单原卷版docx、专题07对数与对数函数考点清单解析版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
专题06 指数与指数函数(考点清单)-2024-2025学年高一数学上学期期末重难点突破(人教A版2019): 这是一份专题06 指数与指数函数(考点清单)-2024-2025学年高一数学上学期期末重难点突破(人教A版2019),文件包含专题06指数与指数函数考点清单原卷版docx、专题06指数与指数函数考点清单解析版docx等2份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。