|试卷下载
搜索
    上传资料 赚现金
    5.2 平行线及其判定 人教版七年级下册基础知识讲与练
    立即下载
    加入资料篮
    5.2 平行线及其判定 人教版七年级下册基础知识讲与练01
    5.2 平行线及其判定 人教版七年级下册基础知识讲与练02
    5.2 平行线及其判定 人教版七年级下册基础知识讲与练03
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    5.2 平行线及其判定 人教版七年级下册基础知识讲与练

    展开
    这是一份5.2 平行线及其判定 人教版七年级下册基础知识讲与练,共17页。

    专题5.9 平行线及其判定(知识讲解)【学习目标】1.理解平行线的概念,会用作图工具画平行线,了解在同一平面内两条直线的位置关系;2.掌握平行公理及其推论;3.掌握平行线的判定方法,并能运用“平行线的判定方法”,判定两条直线是否平行. 【要点梳理】要点一、平行线的定义及画法1.定义:在同一平面内,不相交的两条直线叫做平行线,如果直线a与b平行,记作a∥b.特别说明:(1)平行线的定义有三个特征:一是在同一个平面内;二是两条直线;三是不相交,三者缺一不可;(2)有时说两条射线平行或线段平行,实际是指它们所在的直线平行,两条线段不相交并不意味着它们就平行.(3)在同一平面内,两条直线的位置关系只有相交和平行两种.特别地,重合的直线视为一条直线,不属于上述任何一种位置关系.2.平行线的画法:用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.要点二、平行公理及推论1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.特别说明:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.要点三、直线平行的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵ ∠3=∠2∴ AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵ ∠1=∠2∴ AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵ ∠4+∠2=180°∴ AB∥CD(同旁内角互补,两直线平行)特别说明:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、尺规作图➽➼画平行线✬✬画垂线1.如图,直线CD与直线AB相交与点O,直线外有一点P.(1)过点P画,交AB于点M,过点P画,垂足为N;(2)若、求∠COM的度数.【答案】(1) 详见解析 ; (2) 135°【分析】(1)直接画平行线和垂线即可;(2)根据平行线的性质可得同旁内角互补,由已知可得结论.解:(1)如图,(2)∵PMCD,∴∠PMO+∠COM=180°,∵∠PMO:∠COM=1:3,∴∠COM +∠COM=180°,∴∠COM=135°.【点拨】本题考查了基本作图以及平行线的性质,培养了学生过直线外一点作已知直线的平行线和垂线的画图能力.举一反三:【变式1】如图,请使用三角板与直尺画图:(1)过点Р作直线,交ON于点A;(2)过点Р向OM作垂线,垂足为点C,交ON于点D;【答案】(1) 作图见详解;(2) 作图将详解;【分析】(1)先将三角尺的一直角边紧靠直线OM,边缘与OM重合,再将三角尺的另一条直角边紧贴直尺的一边,最后向上移动三角尺,画一条平行线.(2)先将直尺与OM重合,再反向延长OM,再将三角板一直角边与直尺重合,再移动三角板使另一直角边过点P,最后过三角板的直角边画CM的垂线.(1)解:如图所示:步骤:(1)将三角尺的一直角边紧靠直线OM,边缘与OM重合,(2)将三角尺的另一条直角边紧贴直尺的一边,(3)向下移动三角尺,再次画下一条平行线.(2)解:如图所示:步骤:(1)将直尺与OM重合,(2)反向延长OM,(3)将三角板一直角边与直尺重合,(4)移动三角板使另一直角边过点P,(5)过三角板的直角边画CM的垂线.【点拨】本题考查利用直角和三角板画平行线,和垂线,能够掌握画图原理是解决本题的关键.【变式2】已知三角形ABC,过AC的中点D作AB的平行线,根据语句作图正确的是(    )A. B. C. D.【答案】B【分析】根据中点的定义,平行线的定义判断即可. 解:过AC的中点D作AB的平行线,正确的图形是选项B,故选:B.【点拨】本题考查作图——复杂作图,平行线的定义,中点的定义等知识,解题关键是理解题意,灵活运用所学知识解决问题.类型二、平行线及其判定➽➼平行公理✬✬平行公理的推论 2.若直线a∥b,b∥c,则a∥c的依据是(    ).A.平行的性质 B.等量代换C.平行于同一直线的两条直线平行. D.以上都不对【答案】C【分析】根据平行公理的推论进行判断即可. 解:直线a∥b,b∥c,则a∥c的依据是平行于同一直线的两条直线平行,故选:C.【点拨】本题考查了平行公理的推论,解题关键是明确平行于同一直线的两条直线平行.举一反三:【变式1】 直线a∥b,b∥c,直线d与a相交于点A.判断a与c的位置关系,并说明理由;判断c与d的位置关系,并说明理由.【答案】 (1)a与c的位置关系是平行,理由详见解析;(2)c与d的位置关系是相交,理由详见解析.【分析】(1)根据平行线的性质去解答即可(2)根据两直线的位置关系去解答即可.解:(1) a与c的位置关系是平行,理由是:∵直线a∥b,b∥c,∴a∥c;c与d的位置关系是相交,理由是:∵c∥a,直线d与a相交于点A,∴c与d的位置关系是相交.【点拨】此题重点考察学生对平行线的性质,两直线的位置关系的理解,掌握平行线的性质和两直线的位置关系是解题的关键.【变式2】如图,已知OA∥CD,OB∥CD,那么∠AOB是平角,为什么?【答案】是【分析】根据平行公理:经过直线外一点有且只有一条直线与这条直线平行;可知AO、OB在一条直线上.所以∠AOB是平角. 解: 由于OA∥CD,OB∥CD且OA、OB交于点O,根据过直线CD外一点O有且只有一条直线与已知直线CD平行,因此OA,OB共直线,即A、O、B共直线.所以∠AOB是平角.【点拨】本题考查的是平行公理,解答本题的关键是熟练掌握平行公理:经过直线外一点有且只有一条直线与这条直线平行.类型三、平行线的判定➽➼同位角相等,两直线平行 3.如图,,垂足为,,垂足为,=.在下面括号中填上理由.因为,,所以==.又因为=( ),所以=( ),即=.所以( )【答案】     已知     等量减等量,差相等     同位角相等,两直线平行【分析】根据垂线的定义,得出==,再根据角的等量关系,得出=,然后再根据同位角相等,两直线平行,得出,最后根据解题过程的理由填写即可.解答:因为,,所以==.又因为=(已知),所以=(等量减等量,差相等),即=.所以(同位角相等,两直线平行).【点拨】本题考查了垂线的定义、平行线的判定,解本题的关键在熟练掌握平行线的判定定理.举一反三:【变式1】如图,过直线外一点作已知直线的平行线,其依据是(   )A.两直线平行,同位角相等 B.内错角相等,两直线平行C.同位角相等,两直线平行 D.两直线平行,内错角相等【答案】C【分析】根据三角板在移动过程中,角度不变,故依据是同位角相等,两直线平行,即可求解. 解:如图,三角板在移动过程中,角度不变,其依据是同位角相等,两直线平行.故选:.【点拨】本题主要考查了平行线的判定,熟练掌握同位角相等,两直线平行是解题的关键.【变式2】如图,利用三角尺和直尺可以准确的画出直线AB∥CD,下面是某位同学弄乱了顺序的操作步骤:①沿三角尺的边作出直线CD;②用直尺紧靠三角尺的另一条边;③作直线AB,并用三角尺的一条边贴住直线AB;④沿直尺下移三角尺;正确的操作顺序应是:_____.【答案】③②④①【分析】根据同位角相等两直线平行判断即可. 解:根据同位角相等两直线平行则正确的操作步骤是③②④①,故答案我③②④①.【点拨】此题主要考查了复杂作图,关键是掌握同位角相等,两直线平行.如图,AB⊥EF于点B,CD⊥EF于点D,∠1=∠2,试判断BM与DN是否平行,为什么?【答案】;理由见解析【分析】根据AB⊥EF,CD⊥EF, 得出∠ABE=∠CDE=90°,根据∠1=∠2,得出∠MBE=∠NDE,即可得出. 解:;理由如下:∵AB⊥EF,CD⊥EF, ∴∠ABE=∠CDE=90°(垂直的定义),∵∠1=∠2, ∴∠ABE-∠1=∠CDE-∠2,即∠MBE=∠NDE,∴ (同位角相等,两直线平行).【点拨】本题主要考查了垂直的定义,余角的性质,平行线的判定,根据题意得出∠MBE=∠NDE,是解题的关键.类型四、平行线的判定➽➼内错角相等,两直线平行 4.如图,∠1=∠C,AC平分∠DAB,求证:.【答案】证明见解析【分析】根据角平分线的定义得出∠1=∠2,再利用内错角相等,两直线平行证明即可. 证明:∵AC平分∠DAB,∴∠1=∠2,∵∠1=∠C,∴∠2=∠C,∴.【点拨】此题考查平行线的判定,关键是根据角平分线的定义得出∠1=∠2.举一反三:【变式1】 如图,请填写一个使的条件________,【答案】答案不唯一,【分析】根据平行线的判定定理进行解答即可, 解:填写的条件为:,,(内错角相等,两直线平行),故答案为:答案不唯一,【点拨】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键,【变式2】如图,已知∠DEF =100°,请增加一个条件使得ABCD,这个条件可以是 _____.【答案】∠AFE=100°(答案不唯一)【分析】根据平行线的判定,可利用内错角相等或同旁内角互补,两直线平行得出答案. 解:根据平行线的判定,可添加∠AFE=100°,∵∠AFE=∠DEF =100°,∴ABCD(内错角相等,两直线平行),故答案为:∠AFE=100°(答案不唯一).【点拨】本题主要考查平行线的判定,掌握平行线的判定是解题的关键,即①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行.类型五、平行线的判定➽➼同旁内角互补,两直线平行 5.如图,∠BEC=95°,∠ABE=120°,∠DCE=35°,则AB与CD平行吗?请说明理由.【答案】平行,理由见解析.【分析】先做辅助线延长BE,交CD于F,根据∠BEC+∠CEF=180°可得到∠CEF的度数;再根据三角形内角和定理即可得到∠BFC=60°,至此,再结合平行线的判定定理即可得到结论. 解:AB∥CD,理由如下:如图所示,延长BE,交CD于点F,∵∠BEC=95°,∴∠CEF=180°-95°=85°.又∵∠DCE=35°,∴∠BFC=180°-∠DCE-∠CEF=180°-35°-85°=60°.∵∠ABE=120°(已知),∴∠ABE+∠BFC=180°,∴AB∥CD(同旁内角互补,两直线平行).【点拨】本题考查平行线的判定,熟练掌握平行线的判定定理是关键.举一反三:【变式1】 已知:如图,直线AB,CD被直线GH所截,∠1=112°,∠2=68°,求证:AB//CD.完成下面的证明.证明:∵AB被直线GH所截,∠1=112°,∴∠1=∠   =112°∵∠2=68°,∴∠2+∠3=   ,∴AB//   (     )(填推理的依据)【答案】∠3,180°,CD,同旁内角互补,两直线平行.【分析】先根据对顶角相等求得∠3的度数,进而得到∠2+∠3=180°,即可判定AB∥CD. 证明:∵AB被直线GH所截,∠1=112°, ∴∠1=∠3=112° ∵∠2=68°, ∴∠2+∠3=180°, ∴AB∥CD,(同旁内角互补,两直线平行) 故答案为:∠3,180°,CD,同旁内角互补,两直线平行.【点拨】本题主要考查了平行线的判定,对顶角的性质,掌握两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行是解题的关键.【变式2】如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF的位置关系,并说明理由.【答案】AB∥EF.理由见解析.【分析】依据平行线的性质,即可得到∠BCD=70°,进而得出∠E+∠DCE=180°,进而得到EF∥CD,进而得到AB∥EF.解:AB∥EF,理由如下:∵AB∥CD,∴∠B=∠BCD,∵∠B=70°,∴∠BCD=70°,∵∠BCE=20°,∴∠ECD=50°,∵CEF=130°,∴∠E+∠DCE=180°,∴EF∥CD, ∴AB∥EF.【点拨】本题考查平行线的性质和判定,解题的关键是熟练掌握平行线的判定和性质.类型六、平行线的判定➽➼垂直于同一直线的两直线平行 6.在四边形ABCD中,CF⊥BD于点F,过点A作AG⊥BD,分别交BD,BC于点E,G,若∠DAG=∠BCF,求证:AD∥BC.【分析】根据垂直于同一直线的两直线平行得出,CF∥AG,得出∠BGA=∠BCF,等量代换得到∠BGA=∠DAG,即可判定AD∥BC.证明:∵CF⊥BD,AG⊥BD,∴CF∥AG,∴∠BGA=∠BCF,∵∠DAG=∠BCF,∴∠BGA=∠DAG,∴AD∥BC.【点拨】本题考查了平行线的判定,熟记“垂直于同一直线的两直线平行”及“内错角相等,两直线平行”是解题的关键.举一反三:【变式】 如图,已知AC⊥BC于点C,∠B=70º,∠ACD=20º.(1)求证:AB//CD;(2)在不添加任何辅助线的情况下,请补充一个条件________,使BC//AD.【答案】(1)证明见解析; (2)AC⊥AD(答案不唯一)【分析】(1)由题意易求出,即可利用同旁内角互补,两直线平行证明;(2)由在同一平面内,垂直于同一条直线的两条直线互相平行,即可补充条件为:AC⊥AD.(答案不唯一)(1)证明:∵AC⊥BC,∴,∴,∴,∴;(2)补充条件:AC⊥AD,∵AC⊥AD,AC⊥BC∴BC//AD.故答案为:AC⊥AD.【点拨】本题考查垂直的定义,平行线的判定.掌握平行线的判定条件是解题关键.类型七、平行线的判定➽➼综合应用 7.在下列解题过程的空白处填上恰当的内容(推理的理由或数学表达式)已知:如图,∠1+∠2=180°,∠3=∠4.求证:EFGH.证明:∵∠1+∠2=180°(已知),∠AEG=∠1(______)∴∠AEG+∠______=180°,∴ABCD(______),∴∠AEG=∠EGD(______),∵∠3=∠4(已知),∴∠3+∠AEG=∠4+∠______(等式的性质),即∠FEG=∠______,∴EFGH(______).【答案】对顶角相等;2;同旁内角互补,两直线平行;两直线平行,内错角相等;EGD;EGH;内错角相等,两直线平行【分析】求出∠AEG+∠2=180°,根据平行线的判定得出ABCD,根据平行线的性质得出∠AEG=∠EGD,求出∠3+∠AEG=∠4+∠EGD,根据平行线的判定得出即可.证明:∵∠1+∠2=180°(已知),∠AEG=∠1(对顶角相等)∴∠AEG+∠2=180°,∴ABCD(同旁内角互补,两直线平行),∴∠AEG=∠EGD(两直线平行,内错角相等),∵∠3=∠4(已知),∴∠3+∠AEG=∠4+∠EGD(等式性质),即∠FEG=∠EGH∴EFGH(内错角相等,两直线平行)故答案为:对顶角相等;2;同旁内角互补,两直线平行;两直线平行,内错角相等;EGD;EGH;内错角相等,两直线平行【点拨】本题考查了平行线的性质和判定,能熟记定理的内容是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角,③两直线平行,同旁内角互补,反之亦然.举一反三:【变式1】 如图,,试说明.证明:∵(已知),∴(___________________),∴____________(同位角相等,两直线平行),∵(已知),∴(___________________),∴(___________________),∴(两直线平行,同位角相等).【答案】垂直定义;AB;CD;内错角相等,两直线平行;平行于同一条直线的两条直线平行【分析】根据垂直定义求出∠B=∠CDF=90°,根据平行线的判定得出AB∥EF,EF∥CD,即可得出答案.证明:∵(已知),∴(垂直定义),∴AB//CD(同位角相等,两直线平行),∵(已知),∴(内错角相等,两直线平行),∴(平行于同一条直线的两条直线平行),∴(两直线平行,同位角相等).故答案为:垂直定义;AB;CD;内错角相等,两直线平行;平行于同一条直线的两条直线平行【点拨】本题考查了平行线的判定的应用,能正确运用判定定理进行推理是解此题的关键,注意:平行线的判定定理有:①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行,④平行于同一直线的两直线平行.【变式2】如图,∠AEF=∠B,∠FEC=∠GHB,HG⊥AB于G,求证:CE⊥AB.  【答案】证明见解析.【详解】试题分析:由条件可证明FE∥BC,得到角之间的关系,从而可证得HG∥CE,可得出结论.证明:∵∠AEF=∠B,  ∴EF∥BC,∴∠FEC=∠BCE=∠GHB,∴GH∥CE,∴∠CEB=∠BGH,∵HG⊥AB,∴∠CEB=∠BGH,∴CE⊥AB  中考真题专练 1(2020·浙江金华·中考真题)如图,工人师傅用角尺画出工件边缘的垂线和,得到,理由是(    )A.在同一平面内,垂直于同一条直线的两条直线平行B.在同一平面内,过一点有且仅有一条直线垂直于已知直线C.连接直线外一点与直线各点的所有直线中,垂线段最短D.经过直线外一点,有且只有一条直线与这条直线平行【答案】A【分析】根据在同一平面内,垂直于同一条直线的两条直线平行判断即可.解:由题意得: ∴a∥b(在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行),故选:A.【点拨】本题考查平行线的判定,平行公理,解题关键是理解题意,灵活运用所学直线解决问题.2(2015·甘肃庆阳·中考真题)已知三条不同的直线a、b、c在同一平面内,下列四条命题:①如果a//b,a⊥c,那么b⊥c;②如果b//a,c//a,那么b//c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b//c.其中真命题的是__________.(填写所有真命题的序号)【答案】①②④解答:①如果a//b,a⊥c,那么b⊥c是真命题,②如果b//a,c//a,那么b//c是真命题,③如果b⊥a,c⊥a,那么b⊥c是假命题,④如果b⊥a,c⊥a,那么b//c是真命题,∴真命题有①②④,故答案为:①②④3.(2016·广西来宾·中考真题)如图,在下列条件中,不能判定直线a与b平行的是( )A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°【答案】C【详解】解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,故选C.【点拨】本题考查平行线的判定,难度不大.4.(2020·浙江衢州·中考真题)过直线l外一点P作直线l的平行线,下列尺规作图中错误的是(  )A. B.C. D.【答案】D【分析】根据平行线的判定方法一一判断即可.【详解】A、由作图可知,内错角相等两直线平行,本选项不符合题意.B、由作图可知,同位角相等两直线平行,本选项不符合题意.C、与作图可知,垂直于同一条直线的两条直线平行,本选项不符合题意,D、无法判断两直线平行,故选:D.【点拨】本题考查作图-复杂作图,平行线的判定等知识,解题的关键是读懂图象信息,属于中考常考题型.5.(2018·四川广元·中考真题)一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向平行行驶,那么这两个拐弯的角度可能是(     )A.先向左转130°,再向左转50° B.先向左转50°,再向右转50°C.先向左转50°,再向右转40° D.先向左转50°,再向左转40°【答案】B【详解】根据同位角相等,两直线平行,可得B.
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map