统考版2024高考数学二轮专题复习专题六函数与导数第3讲导数的简单应用课件理
展开考点一 导数的几何意义——明切点,建方程
y-f(x0)=f′(x0)·(x-x0)
(2)[2022·新高考Ⅱ卷]曲线y=ln |x|过坐标原点的两条切线的方程为_______,________.
归纳总结求曲线y=f(x)的切线方程的三种类型及方法(1)已知切点P(x0,y0),求y=f(x)过点P的切线方程:求出切线的斜率f′(x0),由点斜式写出方程.(2)已知切线的斜率为k,求y=f(x)的切线方程:设切点P(x0,y0),通过方程k=f′(x0)解得x0,再由点斜式写出方程.(3)已知切线上一点(非切点),求y=f(x)的切线方程:设切点P(x0,y0),利用导数求得切线斜率f′(x0),然后由斜率公式求得切线斜率,列方程(组)解得x0,再由点斜式或两点式写出方程.
考点二 利用导数研究函数的单调性
考点二 利用导数研究函数的单调性——单调性的“克星”(导数)导数与函数单调性的关系(1)f′(x)>0是f(x)为增函数的__________条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0.(2)f′(x)≥0是f(x)为增函数的__________条件,当函数在某个区间内恒有f′(x)=0时,f(x)为常数函数,不具有单调性.
归纳总结由函数的单调性求参数的取值范围(1)可导函数f(x)在区间D上单调递增(或递减)求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)对x∈D恒成立问题,再参变分离,转化为求最值问题,要注意“=”是否取到.(2)可导函数在某一区间上存在单调区间,实际上就是f′(x)>0(或f′(x)<0)在该区间上存在解集,这样就把函数的单调性问题转化成不等式问题.(3)若已知f(x)在区间I上的单调性,区间I中含有参数时,可先求出f(x)的单调区间,令I是其单调区间的子集,从而可求出参数的取值范围.(4)若已知f(x)在区间D上不单调,则f(x)在D上有极值点,且极值点不是D的端点.
2.[2023·全国乙卷]设a∈(0,1),若函数f(x)=ax+(1+a)x在(0,+∞)上单调递增,则a的取值范围是________.
考点三 利用导数研究函数极值、最值
考点三 利用导数研究函数极值、最值——导数拿下“峰”与“谷” 导数与函数的极值、最值的关系(1)y=f(x)满足f′(x0)=0.若在x0附近左侧f′(x)>0,右侧f′(x)<0,则f(x0)为函数f(x)的________值;若在x0附近左侧f′(x)<0,右侧f′(x)>0,则f(x0)为函数f(x)的________值.(2)设函数y=f(x) 在[a,b]上连续,在(a,b)内可导,则f(x)在[a,b]上必有_______值和______值且在极值点或端点处取得.
归纳总结利用导数研究函数极值问题的注意点(1)已知函数极值,确定函数解析式中的参数时,要注意根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)导数值为0不是此点为极值点的充要条件,所以求解后必须检验.
对点训练1.[2023·江西省九江市高三三模]已知函数f(x)=ex-ax2(a∈R)有两个极值点x1,x2,且x1=2x2,则a=______.
统考版2024高考数学二轮专题复习第三篇关键能力为重专题六函数与导数第3讲导数的简单应用课件文: 这是一份统考版2024高考数学二轮专题复习第三篇关键能力为重专题六函数与导数第3讲导数的简单应用课件文,共30页。PPT课件主要包含了考点一,考点二,考点三,cosx,-sinx,axlna,答案D,答案B,充分不必要,必要不充分等内容,欢迎下载使用。
统考版2024高考数学二轮专题复习第三篇关键能力为重专题六函数与导数第4讲导数的综合应用课件文: 这是一份统考版2024高考数学二轮专题复习第三篇关键能力为重专题六函数与导数第4讲导数的综合应用课件文,共44页。PPT课件主要包含了考点一,考点二,考点三,afxmin,a≤fxmin,所有的,快审题等内容,欢迎下载使用。
统考版2024高考数学二轮专题复习专题六函数与导数第4讲导数的综合应用课件理: 这是一份统考版2024高考数学二轮专题复习专题六函数与导数第4讲导数的综合应用课件理,共51页。PPT课件主要包含了考点一,考点二,考点三,afxmin,a≤fxmin,所有的,快审题等内容,欢迎下载使用。