所属成套资源:备考2024届高考数学一轮复习讲义全套
备考2024届高考数学一轮复习讲义第十章计数原理概率随机变量及其分布第1讲两个计数原理
展开
这是一份备考2024届高考数学一轮复习讲义第十章计数原理概率随机变量及其分布第1讲两个计数原理,共5页。
1.分类加法计数原理
完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法,那么完成这件事共有N=① m+n 种不同的方法.
2.分步乘法计数原理
完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=② m×n 种不同的方法.
辨析比较
两个计数原理的联系与区别
1.[多选]下列说法正确的是( BD )
A.在分类加法计数原理中,两类不同方案中的方法可以相同
B.在分类加法计数原理中,每类方案中的方法都能直接完成这件事
C.在分步乘法计数原理中,事情是分两步完成的,其中任何一个单独的步骤都能完成这件事
D.从甲地经丙地到乙地是分步问题
2.[教材改编]已知某公园有4个门,从一个门进,另一个门出,则不同的进出公园的方式有 12 种.
解析 将4个门分别编号为1,2,3,4,从1号门进入后,有3种出门的方式,同理,从2,3,4号门进入,也各有3种出门的方式,故不同的进出公园的方式共有3×4=12(种).
3.[易错题]某人有3个电子邮箱,他要发5封不同的电子邮件,则不同的发送方法有 243 种.
解析 因为每封电子邮件有3种不同的发送方法,所以要发5封电子邮件,不同的发送方法有3×3×3×3×3=243(种).
4.[教材改编]书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书.从书架中任取1本书,则不同的取法种数为 9 .
解析 分三类:第一类,从第1层取一本书,有4种取法;第二类,从第2层取一本书,有3种取法;第三类,从第3层取一本书,有2种取法.共有取法4+3+2=9(种).
研透高考 明确方向
命题点1 分类加法计数原理
例1 (1)我们把各位数字之和为6的四位数称为“六合数”(如2 022是“六合数”),则首位为2的“六合数”共有( B )
A.18个B.15个C.12个D.9个
解析 依题意,这个四位数的百位数、十位数、个位数之和为4.由4,0,0组成3个数分别为400,040,004;由3,1,0组成6个数分别为310,301,130,103,013,031;由2,2,0组成3个数分别为220,202,022;由2,1,1组成3个数分别为211,121,112.共计3+6+3+3=15(个).
(2)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为 13 .
解析 当a=0时,b的值可以是-1,0,1,2,(a,b)的个数为4.当a≠0时,要使方程ax2+2x+b=0有实数解,需使Δ=4-4ab≥0,即ab≤1.若a=-1,则b的值可以是-1,0,1,2,(a,b)的个数为4;若a=1,则b的值可以是-1,0,1,(a,b)的个数为3;若a=2,则b的值可以是-1,0,(a,b)的个数为2.由分类加法计数原理可知,(a,b)的个数为4+4+3+2=13.
方法技巧
分类加法计数原理的应用思路
(1)根据题目中的关键词、关键元素和关键位置等确定恰当的分类标准,分类标准要明确、统一;
(2)分类时,注意完成这件事的任何一种方法必须属于某一类,不能重复.
训练1 集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是( B )
A.9B.14C.15D.21
解析 当x=2时,x≠y,y可从3,4,5,6,7,8,9中取,有7种方法.当x≠2时,由P⊆Q,得x=y,x可从3,4,5,6,7,8,9中取,有7种方法.综上,满足条件的点共有7+7=14(个).
命题点2 分步乘法计数原理
例2 (1)[2023全国卷乙]甲、乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( C )
A.30种B.60种C.120种D.240种
解析 甲、乙二人先选1种相同的课外读物,有6种情况,再从剩下的5种课外读物中各自选1本不同的读物,有5×4=20(种)情况,由分步乘法计数原理可得,共有6×20=120(种)选法,故选C.
(2)[多选]有4位同学报名参加三个不同的社团,则下列说法正确的是( AC )
A.每位同学限报其中一个社团,则不同的报名方法共有34种
B.每位同学限报其中一个社团,则不同的报名方法共有43种
C.每个社团限报一个人,则不同的报名方法共有24种
D.每个社团限报一个人,则不同的报名方法共有33种
解析 对于A选项,第1个同学有3种报名方法,第2个同学有3种报名方法,后面的2个同学也有3种报名方法,根据分步乘法计数原理共有34种报名方法,A正确,B错误;对于C选项,每个社团限报一个人,则第1个社团有4种选择,第2个社团有3种选择,第3个社团有2种选择,根据分步乘法计数原理,共有4×3×2=24(种)选择,C正确,D错误.故选AC.
方法技巧
分步乘法计数原理的应用思路
根据事件发生的过程合理分步,分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.
训练2 [多选]某校高二年级安排甲、乙、丙三名同学到A,B,C,D,E五个社区进行暑期社会实践活动,每名同学只能选择一个社区进行实践活动,且多名同学可以选择同一个社区进行实践活动,则下列说法正确的有( AC )
A.如果社区A必须有同学选择,则不同的安排方法有61种
B.如果同学甲必须选择社区A,则不同的安排方法有50种
C.如果三名同学选择的社区各不相同,则不同的安排方法共有60种
D.如果甲、乙两名同学必须在同一个社区,则不同的安排方法共有20种
解析 对于A,如果社区A必须有同学选择,则不同的安排方法有53-43=61(种),故A正确;对于B,如果同学甲必须选择社区A,则不同的安排方法有52=25(种),故B错误;对于C,如果三名同学选择的社区各不相同,则不同的安排方法共有5×4×3=60(种),故C正确;对于D,甲、乙两名同学必须在同一个社区,第一步,将甲、乙视作一个整体,第二步,两个整体挑选社区,则不同的安排方法共有52=25(种),故D错误.故选AC.
命题点3 两个计数原理的综合应用
例3 (1)《周髀算经》是中国最古老的天文学和数学著作,其中记载了“勾股圆方图”(如图),用以证明勾股定理.现提供4种不同颜色给图中5个区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则不同的涂色方法种数为( C )
A.36B.48C.72D.96
解析 解法一 根据题意得,涂色分2步进行:
①对于区域A,B,E,三个区域两两相邻,有A43=24(种)涂色方法;(区域E位于中心位置,其他4个区域均与区域E相邻,故先考虑两两相邻的区域A,B,E的涂色方法,再研究余下2个区域的涂色方法)
②对于区域C,D,若区域C与区域A颜色相同,则区域D有2种涂色方法,若区域C与区域A颜色不同,当A,B,E涂色确定时,则区域C和区域D涂色方法确定,只有1种,由分类加法计数原理可知区域C,D有2+1=3(种)涂色方法.
由分步乘法计数原理得,共有24×3=72(种)不同的涂色方法.故选C.
解法二 可分两种情况:①区域A,C不同色,先涂区域A有4种,区域C有3种,区域E有2种,区域B,D各有1种,有4×3×2=24(种)涂法.②区域A,C同色,先涂区域A有4种,区域E有3种,区域C有1种,区域B,D各有2种,有4×3×2×2=48(种)涂法.故共有24+48=72(种)涂色方法.
(2)由0,1,2,3,4,5,6这7个数字可以组成 420 个无重复数字的四位偶数.
解析 要完成的一件事为“组成无重复数字的四位偶数”,所以千位数字不能为0,个位数字必须是偶数,且组成的四位数中的四个数字不重复.因此应先分类,再分步.第1类,当千位数字为奇数,即取1,3,5中的任意一个时,个位数字可取0,2,4,6中的任意一个,百位数字不能取与个位、千位数字重复的数字,十位数字不能取与个位、百位、千位数字重复的数字.根据分步乘法计数原理,不同的取法种数为3×4×5×4=240.第2类,当千位数字为偶数,即取2,4,6中的任意一个时,个位数字可以取除千位数字外的任意一个偶数数字,百位数字不能取与个位、千位数字重复的数字,十位数字不能取与个位、百位、千位数字重复的数字.根据分步乘法计数原理,不同的取法种数为3×3×5×4=180.根据分类加法计数原理,可以组成无重复数字的四位偶数的个数为240+180=420.
方法技巧
1.利用两个计数原理解决问题的一般步骤
2.涂色问题常用的两种方法
训练3 (1)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是( D )
A.48B.18C.24D.36
解析 第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).
(2)甲与其四位同事各有一辆汽车,甲的车牌尾号为9,其四位同事的车牌尾号分别是0,2,1,5.为遵守当地某月5日至9日5天的限行规定(奇数日车牌尾号为奇数的车通行,偶数日车牌尾号为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案种数为( B )
A.64B.80C.96D.120
解析 5日至9日,有3个奇数日,2个偶数日.第一步,安排偶数日出行,每天都有2种选择,不同的用车方案共有2×2=4(种).第二步,安排奇数日出行,分两类讨论:第一类,选1天安排甲的车,不同的用车方案共有3×2×2=12(种);第二类,不安排甲的车,每天都有2种选择,不同的用车方案共有2×2×2=8(种).综上,不同的用车方案种数为4×(12+8)=80,故选B.课标要求
命题点
五年考情
命题分析预测
了解分类加法计数原理、分步乘法计数原理及其意义.
分类加法计数原理
2023新高考卷ⅠT13
两个计数原理是解决排列、组合问题的基本方法,也是与实际联系密切的部分,既能单独命题,也常与排列组合问题、概率计算问题综合命题,题型以小题为主,难度不大.在2025年高考的复习备考中要注意两个计数原理的区别并能灵活应用.
分步乘法计数原理
2023全国卷乙T7;2022新高考卷ⅡT5;2021全国卷乙T6;2020新高考卷ⅠT3;2020全国卷ⅡT14
两个计数原理的综合应用
原理
分类加法计数原理
分步乘法计数原理
联系
都是对完成一件事的方法种数而言.
区别一
每类方案中的每一种方法都能独立完成这件事.
各个步骤都完成才算完成这件事(每步中的每一种方法都不能独立完成这件事).
区别二
各类方法之间是相互独立的,既不能重复也不能遗漏.
各步之间是相互依存的,缺一不可.
相关学案
这是一份备考2024届高考数学一轮复习讲义第十章计数原理概率随机变量及其分布第6讲离散型随机变量及其分布列数字特征,共8页。
这是一份备考2024届高考数学一轮复习讲义第十章计数原理概率随机变量及其分布第3讲二项式定理,共8页。
这是一份备考2024届高考数学一轮复习讲义第十章计数原理概率随机变量及其分布第2讲排列与组合,共8页。