湖南省郴州市资兴市兴华实验学校2023-2024学年数学九年级第一学期期末质量跟踪监视试题含答案
展开学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)
1.已知一个扇形的半径为60cm,圆心角为180°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为( )
A.15cmB.20cmC.25cmD.30cm
2.若关于x的一元二次方程有两个不相等的实数根,那么k的取值范围是( )
A.k≠0B.k>4C.k<4D.k<4且k≠0
3.九(1)班的教室里正在召开50人的座谈会,其中有3名教师,12名家长,35名学生,当林校长走到教室门口时,听到里面有人在发言,那么发言人是家长的概率为( )
A.B.C.D.
4.如图,在正方形ABCD中,点E,F分别在BC,CD上,AE=AF,AC与EF相交于点G,下列结论:①AC垂直平分EF;②BE+DF=EF;③当∠DAF=15°时,△AEF为等边三角形;④当∠EAF=60°时,S△ABE=S△CEF,其中正确的是( )
A.①③B.②④C.①③④D.②③④
5.下列运算正确的是( )
A.B.C.D.
6.如图,在□ABCD中,R为BC延长线上的点,连接AR交BD于点P,若CR:AD=2:3,则AP:PR的值为( )
A.3:5B.2:3C.3:4D.3:2
7.已知二次函数的图象如图所示,则反比例函数与一次函数的图象可能是 ( )
A.B.
C.D.
8.关于反比例函数,下列说法正确的是( )
A.函数图像经过点(2,2);B.函数图像位于第一、三象限;
C.当时,函数值随着的增大而增大;D.当时,.
9. 若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为( ).
A.-1或2B.-1或1
C.1或2D.-1或2或1
10.某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是( )
A.B.C.D.
11.将二次函数y=2x2-4x+4的图象向左平移2个单位,再向下平移1个单位后所得图象的函数解析式为( )
A.y=2(x+1)2+1B.y=2(x+1)2+3C.y=2(x-3)2+1D.y=-2(x-3)2+3
12.若函数y=的图象在其象限内y的值随x的增大而增大,则m的取值范围是( )
A.m>2B.m<2C.m>-2D.m<-2
二、填空题(每题4分,共24分)
13.请你写出一个二次函数,其图象满足条件:①开口向下;②与轴的交点坐标为.此二次函数的解析式可以是______________
14.如图,已知半⊙O的直径AB=8,将半⊙O绕A点逆时针旋转,使点B落在点B'处,AB'与半⊙O交于点C,若图中阴影部分的面积是8π,则弧BC的长为_____.
15.已知点P(a,b)在反比例函数y=的图象上,则ab=_____.
16.已知扇形的半径为,圆心角为,则扇形的弧长为__________.
17.若正多边形的每一个内角为,则这个正多边形的边数是__________.
18.如图,矩形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:
第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);
第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;
第三步:如图③,将MN左侧纸片绕G点按顺时针旋转180º,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180º,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片(裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最大值为___cm.
三、解答题(共78分)
19.(8分)网络购物已成为新的消费方式,催生了快递行业的高速发展,某小型的快递公司,今年5月份与7月份完成快递件数分别为5万件和5.832份万件,假定每月投递的快递件数的增长率相同.
(1)求该快递公司投递的快递件数的月平均增长率;
(2)如果每个快递小哥平均每月最多可投递0.8万件,公司现有8个快递小哥,按此快递增长速度,不增加人手的情况下,能否完成今年9月份的投递任务?
20.(8分)甲、乙两名同学5次数学练习(满分120分)的成绩如下表:(单位:分)
已知甲同学这5次数学练习成绩的平均数为100分,方差为10分.
(1)乙同学这5次数学练习成绩的平均数为 分,方差为 分;
(2)甲、乙都认为自已在这5次练习中的表现比对方更出色,请你分别写出一条支持他们俩观点的理由.
21.(8分)某高速公路建设中,需要确定隧道AB的长度.已知在离地面1800m高度C处的飞机上,测量人员测得正前方A,B两点处的俯角分别为60°和45°(即∠DCA=60°,∠DCB=45°).求隧道AB的长.(结果保留根号)
22.(10分)将两张半径均为10的半圆形的纸片完全重合叠放一起,上面这张纸片绕着直径的一端B顺时针旋转30°后得到如图所示的图形,与直径AB交于点C,连接点与圆心O′.
(1)求的长;
(2)求图中下面这张半圆形纸片未被上面这张纸片重叠部分的面积.
23.(10分)如图,一般捕鱼船在A处发出求救信号,位于A处正西方向的B处有一艘救援艇决定前去数援,但两船之间有大片暗礁,无法直线到达.救援艇决定马上调整方向,先向北偏东方以每小时30海里的速度航行,同时捕鱼船向正北低速航行.30分钟后,捕鱼船到达距离A处海里的D处,此时救援艇在C处测得D处在南偏东的方向上.
求C、D两点的距离;
捕鱼船继续低速向北航行,救援艇决定再次调整航向,沿CE方向前去救援,并且捕鱼船和救援艇同达时到E处,若两船航速不变,求的正弦值.参考数据:,,
24.(10分)如图,边长为3正方形的顶点与原点重合,点在轴,轴上。反比例函数的图象交于点,连接,.
(1)求反比例函数的解析式;
(2)过点作轴的平行线,点在直线上运动,点在轴上运动.
①若是以为直角顶点的等腰直角三角形,求的面积;
②将“①”中的“以为直角顶点的”去掉,将问题改为“若是等腰直角三角形”,的面积除了“①”中求得的结果外,还可以是______.(直接写答案,不用写步骤)
25.(12分)如图,在□中, 是上一点,且,与的延长线交点.
(1)求证:△∽△;
(2)若△的面积为1,求□ 的面积.
26.(12分)如图,已知Rt△ABC中,∠ACB=90°,E为AB上一点,以AE为直径作⊙O与BC相切于点D,连接ED并延长交AC的延长线于点F.
(1)求证:AE=AF;
(2)若AE=5,AC=4,求BE的长.
参考答案
一、选择题(每题4分,共48分)
1、D
2、C
3、B
4、C
5、D
6、A
7、B
8、C
9、D
10、A
11、A
12、B
二、填空题(每题4分,共24分)
13、
14、2π
15、2
16、
17、八(或8)
18、
三、解答题(共78分)
19、(1)该快递公司投递的快递件数的月平均增长率为8%;(2)按此快递增长速度,不增加人手的情况下,不能完成今年9月份的投递任务,见解析
20、(1)100,10;(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;
乙的数学成绩在100分以上(含100分)的次数更多.
21、隧道AB的长为(1800﹣600)m
22、(1)(2)
23、(1)CD两点的距离是10海里;(2)0.08
24、(1);(2)①或.②1或2.
25、(1)证明见解析;(2)24
26、(1)证明见解析;(2).
测试日期
11月5日
11月20日
12月5日
12月20日
1月3日
甲
96
97
100
103
104
乙
100
95
100
105
100
2023-2024学年江苏无锡市锡中学实验学校数学九年级第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年江苏无锡市锡中学实验学校数学九年级第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,若反比例函数y=的图象经过点,下列事件中是随机事件的是等内容,欢迎下载使用。
湖南省娄底市2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案: 这是一份湖南省娄底市2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,如图,,,以下结论成立的是,对于二次函数,下列说法正确的是等内容,欢迎下载使用。
湖南省2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案: 这是一份湖南省2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了下列方程中是一元二次方程的是等内容,欢迎下载使用。