湖南省邵阳市大祥区2023-2024学年数学九年级第一学期期末质量跟踪监视试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图,在⊙O中,是直径,是弦,于,连接,∠,则下列说法正确的个数是( )
①;②;③;④
A.1B.2C.3D.4
2.在平面直角坐标系中,正方形,,,,,按如图所示的方式放置,其中点在轴上,点,,,,,,…在轴上,已知正方形的边长为1,,,…,则正方形的边长是( )
A.B.C.D.
3.若|a+3|+|b﹣2|=0,则ab的值为( )
A.﹣6 B.﹣9 C.9 D.6
4.池塘中放养了鲤鱼2000条,鲢鱼若干条,在几次随机捕捞中,共捕到鲤鱼200条,鲢鱼300条,估计池塘中原来放养了鲢鱼( )
A.10000条B.2000条C.3000条D.4000条
5.某商店以每件60元的价格购进一批货物,零售价为每件80元时,可以卖出100件(按相关规定零售价不能超过80元).如果零售价在80元的基础上每降价1元,可以多卖出10件,当零售价在80元的基础上降价x元时,能获得2160元的利润,根据题意,可列方程为( )
A.x(100+10x)=2160B.(20﹣x)(100+10x)=2160
C.(20+x)(100+10x)=2160D.(20﹣x)(100﹣10x)=2160
6.将抛物线y = x2平移得到抛物线y = (x+2)2,则这个平移过程正确的是( )
A.向左平移2个单位 B.向右平移2个单位
C.向上平移2个单位 D.向下平移2个单位
7.二次函数的图像如图所示,下面结论:①;②;③函数的最小值为;④当时,;⑤当时,(、分别是、对应的函数值).正确的个数为( )
A.B.C.D.
8.如图,在中,,,,将绕点顺时针旋转度得到,当点的对应点恰好落在边上时,则的长为( )
A.1.6B.1.8C.2D.2.6
9.如图,抛物线与直线交于,两点,与直线交于点,将抛物线沿着射线方向平移个单位.在整个平移过程中,点经过的路程为( )
A.B.C.D.
10.下列图形中既是轴对称图形又是中心对称图形的是( )
A.B.
C.D.
二、填空题(每小题3分,共24分)
11.下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程.
已知:直线和直线外一点.
求作:直线的垂线,使它经过.
作法:如图2.
(1)在直线上取一点,连接;
(2)分别以点和点为圆心,大于的长为半径作弧,两弧相交于,两点,连接交于点;
(3)以点为圆心,为半径作圆,交直线于点(异于点),作直线.所以直线就是所求作的垂线.
请你写出上述作垂线的依据:______.
12.如图,矩形ABCD中,AB=2,BC=,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1﹣S2为_____.
13.如图,在平面直角坐标系中,正方形ABCD的面积为20,顶点A在y轴上,顶点C在x轴上,顶点D在双曲线的图象上,边CD交y轴于点E,若,则k的值为______.
14.若能分解成两个一次因式的积,则整数k=_________.
15.如图,在△ABC中,AB=AC=10,点D是边BC上一动点(不与B,C重合),∠ADE=∠B=α,DE交AC于点E,且csα=.下列结论:①△ADE∽△ACD;②当BD=6时,△ABD与△DCE全等;③△DCE为直角三角形时,BD为8或;④0<CE≤6.1.其中正确的结论是_____.(把你认为正确结论的序号都填上)
16.体育课上,小聪,小明,小智,小慧分别在点O处进行了一次铅球试投,铅球分别落在图中的点A,B,C,D处,则他们四人中,成绩最好的是______.
17.小红在地上画了半径为2m和3m的同心圆,如图,然后在一定距离外向圈内掷小石子,则掷中阴影部分的概率是_____.
18.在中,,为的中点,则的长为__________.
三、解答题(共66分)
19.(10分)在2017年“KFC”篮球赛进校园活动中,某校甲、乙两队进行决赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且乙队已经赢得了第1局比赛,那么甲队获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)
20.(6分)探究题:如图1,和均为等边三角形,点在边上,连接.
(1)请你解答以下问题:
①求的度数;
②写出线段,,之间数量关系,并说明理由.
(2)拓展探究:如图2,和均为等腰直角三角形,,点在边上,连接.请判断的度数及线段,,之间的数量关系,并说明理由.
(3)解决问题:如图3,在四边形中,,,,与交于点.若恰好平分,请直接写出线段的长度.
21.(6分)如图是一种简易台灯的结构图,灯座为△ABC,A、C、D在同一直线上,量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.求台灯的高(即台灯最高点E到底盘AB的距离).(结果取整,参考数据sin15°≈0.26,cs15°≈0.97,tan15°≈0.27,≈1.73)
22.(8分)如图,在中,,的平分线交于点,点在上,以点为圆心,为半径的圆恰好经过点,分别交,于点,
(1)试判断直线与的位置关系,并说明理由.
(2)若,,求阴影部分的面积(结果保留)
23.(8分)为了测量山坡上的电线杆PQ的高度,某数学活动小组的同学们带上自制的测倾器和皮尺来到山脚下,他们在A处测得信号塔顶端P的仰角是45°,信号塔底端点Q的仰角为30°,沿水平地面向前走100米到B处,测得信号塔顶端P的仰角是60°,求信号塔PQ得高度.
24.(8分)抛物线y=-2x2+8x-1.
(1)用配方法求顶点坐标,对称轴;
(2)x取何值时,y随x的增大而减小?
25.(10分)用配方法解方程2x2-4x-3=0.
26.(10分)在等边三角形ABC中,点D,E分别在BC,AC上,且DC=AE,AD与BE交于点P,连接PC.
(1)证明:ΔABE≌ΔCAD.
(2)若CE=CP,求证∠CPD=∠PBD.
(3)在(2)的条件下,证明:点D是BC的黄金分割点.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、D
3、C
4、C
5、B
6、A
7、C
8、A
9、B
10、B
二、填空题(每小题3分,共24分)
11、直径所对的圆周角是直角
12、3﹣
13、4
14、
15、①、②、④.
16、小智
17、.
18、5
三、解答题(共66分)
19、
20、(1)①;②线段、、之间的数量关系为:,理由见解析;
(2),,理由见解析.
(3)理由见解析.
21、台灯的高约为45cm.
22、(1)与相切,见解析;(2)
23、100米
24、(1)(2,2),x=2(2)当x≥2时,y随x的增大而减小
25、x1=1+,x2=1-.
26、(1)见解析;(2)见解析;(3)见解析
2023-2024学年湖南省邵阳市大祥区九上数学期末联考模拟试题含答案: 这是一份2023-2024学年湖南省邵阳市大祥区九上数学期末联考模拟试题含答案,共8页。
湖南省娄底市2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案: 这是一份湖南省娄底市2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,如图,,,以下结论成立的是,对于二次函数,下列说法正确的是等内容,欢迎下载使用。
湖南省2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案: 这是一份湖南省2023-2024学年九年级数学第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了下列方程中是一元二次方程的是等内容,欢迎下载使用。