湖北省宜昌市宜都市2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案
展开这是一份湖北省宜昌市宜都市2023-2024学年九年级数学第一学期期末学业质量监测模拟试题含答案,共9页。试卷主要包含了函数的自变量的取值范围是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.甲、乙、丙、丁四人各进行了次射击测试,他们的平均成绩相同,方差分别是则射击成绩最稳定的是( )
A.甲B.乙C.丙D.丁
2.如图,在平面直角坐标系xOy中,正方形ABCD的顶点D在y轴上且A(﹣3,0),B(2,b),则正方形ABCD的面积是( )
A.20B.16C.34D.25
3.如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为( )
A.2B.3C.4D.5
4.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为( )
A.(﹣)B.(﹣)C.(﹣)D.(﹣)
5.在一个不透明的袋子中放有若干个球,其中有6个白球,其余是红球,这些球除颜色外完全相同.每次把球充分搅匀后,任意摸出一个球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则红球的个数约是( )
A.2B.12C.18D.24
6. “黄金分割”是一条举世公认的美学定律. 例如在摄影中,人们常依据黄金分割进行构图,使画面整体和谐. 目前,照相机和手机自带的九宫格就是黄金分割的简化版. 要拍摄草坪上的小狗,按照黄金分割的原则,应该使小狗置于画面中的位置( )
A.①B.②C.③D.④
7.函数的自变量的取值范围是( )
A.B.C.D.且
8.如图,是的直径,且,是上一点,将弧沿直线翻折,若翻折后的圆弧恰好经过点,取,,,那么由线段、和弧所围成的曲边三角形的面积与下列四个数值最接近的是( )
A.3.2B.3.6C.3.8D.4.2
9.如图,在Rt△ABC中,∠C=90°,点P是边AC上一点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,BD平分∠ABC,以下四个结论①△BQD是等腰三角形;②BQ=DP;③PA=QP;④=(1+)2;其中正确的结论的个数( )
A.1个B.2个C.3个D.4个
10.羽毛球运动是一项非常受人喜欢的体育运动.某运动员在进行羽毛球训练时,羽毛球飞行的高度与发球后球飞行的时间满足关系式,则该运动员发球后时,羽毛球飞行的高度为( )
A.B.C.D.
11.一个几何体由大小相同的小方块搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到几何体的形状图是( )
A.B.C.D.
12.如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为4,且∠B=2∠D,连接AC,则线段AC的长为( )
A.4B.4C.6D.8
二、填空题(每题4分,共24分)
13.如图,在平面直角坐标系中,点A 是函数 图象上的点,AB⊥x 轴,垂足为 B,若 △ABO的面积为3,则的值为__.
14.如图,平行四边形中,,如果,则___________.
15.如图,在四边形ABCD中,,E、F、G分别是AB、CD、AC的中点,若,,则等于______________.
16.如图,在△ABC中,AD是BC上的高,tanB=cs∠DAC,若sinC=,BC=12,则AD的长_____.
17.关于x的方程x2﹣x﹣m=0有两个不相等实根,则m的取值范围是__________.
18.若二次函数的图像与轴只有一个公共点,则实数_______.
三、解答题(共78分)
19.(8分) “校园安全”越来越受到人们的关注,我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.根据图中信息回答下列问题:
(1)接受问卷调查的学生共有______人,条形统计图中m的值为______;
(2)扇形统计图中“了解很少”部分所对应扇形的圆心角的度数为______;
(3)若该中学共有学生1800人,根据上述调查结果,可以估计出该学校学生中对校园安全知识达到“非常了解”和“基本了解”程度的总人数为______人;
(4)若从对校园安全知识达到“非常了解”程度的2名男生和2名女生中随机抽取2人参加校园安全知识竞赛,请用列表或画树状图的方法,求恰好抽到1名男生和1名女生的概率.
20.(8分)在平面直角坐标系中,直线与双曲线相交于,两点,点坐标为(-3,2),点坐标为(n,-3).
(1)求一次函数和反比例函数的表达式;
(2)如果点是轴上一点,且的面积是5,求点的坐标.
(3)利用函数图象直接写出关于x的不等式的解集.
21.(8分)如图,在中,,,点均在边上,且.
(1)将绕A点逆时针旋转,可使AB与AC重合,画出旋转后的图形,在原图中补出旋转后的图形.
(2)求和的度数.
22.(10分)某商品现在的售价为每件60元,每星期可卖出300件. 市场调查反映:如调整价格,每降价1元,每星期可多卖出20件. 已知商品的进价为每件40元,如何定价才能使利润最大?这个最大利润是多少?
23.(10分)如图,已知,点、坐标分别为、.
(1)把绕原点顺时针旋转得,画出旋转后的;
(2)在(1)的条件下,求点旋转到点经过的路径的长.
24.(10分)如图,的半径为,是的直径,是上一点,连接、.为劣弧的中点,过点作,垂足为,交于点,,交的延长线于点.
(1)求证:是的切线;
(2)连接,若,如图2.
①求的长;
②图中阴影部分的面积等于_________.
25.(12分)在一个不透明的盒子中装有4张卡片.4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.
(1)从盒子任意抽取一张卡片,恰好抽到标有奇数卡片的概率是: ;
(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率(请用画树状图或列表等方法求解).
26.(12分)数学活动课上,张老师引导同学进行如下探究:如图1,将长为的铅笔斜靠在垂直于水平桌面的直尺的边沿上,一端固定在桌面上,图2是示意图.
活动一
如图3,将铅笔绕端点顺时针旋转,与交于点,当旋转至水平位置时,铅笔的中点与点重合.
数学思考
(1)设,点到的距离.
①用含的代数式表示:的长是_________,的长是________;
②与的函数关系式是_____________,自变量的取值范围是____________.
活动二
(2)①列表:根据(1)中所求函数关系式计算并补全表格.
②描点:根据表中数值,描出①中剩余的两个点.
③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.
数学思考
(3)请你结合函数的图象,写出该函数的两条性质或结论.
参考答案
一、选择题(每题4分,共48分)
1、C
2、C
3、B
4、A
5、C
6、B
7、C
8、C
9、C
10、C
11、D
12、B
二、填空题(每题4分,共24分)
13、-6
14、
15、36°
16、1
17、m>﹣
18、1
三、解答题(共78分)
19、(1)60,10;(2)96°;(3)1020;(4)
20、(1)一次函数表达式为y=-x-1;反比例函数表达式为y=-;(2)点P的坐标是(-3,0)或(1,0);(3)-3<x<0或x>0
21、(1)见解析;(2),.
22、定价为57.5元时,所获利润最大,最大利润为6125元.
23、(1)答案见解析;(2).
24、(1)见解析;(2)①,②.
25、 (1) ;(2).
26、 (1) ),,;(2)见解析;(3)①随着的增大而减小;②图象关于直线对称;③函数的取值范围是.
6
5
4
3.5
3
2.5
2
1
0.5
0
0
0.55
1.2
1.58
1.0
2.47
3
4.29
5.08
相关试卷
这是一份湖北省随州市曾都区2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了下列图形中是中心对称图形的共有,对于抛物线,下列结论等内容,欢迎下载使用。
这是一份2023-2024学年湖北省阳新县九年级数学第一学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份2023-2024学年湖北省麻城市九年级数学第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,有一组数据,下列事件是随机事件的是等内容,欢迎下载使用。