泰安市2023-2024学年数学九上期末学业质量监测试题含答案
展开
这是一份泰安市2023-2024学年数学九上期末学业质量监测试题含答案,共8页。试卷主要包含了如果,关于抛物线的说法中,正确的是,点关于原点的对称点是,如图放置的几何体的左视图是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图,如果从半径为9cm的圆形纸片剪去圆周的一个扇形,将留下的扇形围成
一个圆锥(接缝处不重叠),那么这个圆锥的高为
A.6cmB.cmC.8cmD.cm
2.如图所示的是几个完全相同的小正方体搭建成的几何体的俯视图,其中小正方形内的数字为对应位置上的小正方体的个数,则该几何体的左视图为( )
A.B.C.D.
3.二次函数的图象与x轴的交点的横坐标分别为﹣1和3,则的图象与x轴的交点的横坐标分别为( )
A.1和5B.﹣3和1C.﹣3和5D.3和5
4.如果△ABC∽△DEF,且对应边的AB与DE的长分别为2、3,则△ABC与△DEF的面积之比为( )
A.4:9B.2:3C.3:2D.9:4
5.如果(,均为非零向量),那么下列结论错误的是( )
A.//B.-2=0C.=D.
6.如图,在▱ABCD中,F为BC的中点,延长AD至E,使DE:AD=1:3,连接FF交DC于点G,则DG:CG=( )
A.1:2B.2:3C.3:4D.2:5
7.如图,在半径为1的⊙O中,直径AB把⊙O分成上、下两个半圆,点C是上半圆上一个动点(C与点A、B不重合),过点C作弦CD⊥AB,垂足为E,∠OCD的平分线交⊙O于点P,设CE=x,AP=y,下列图象中,最能刻画y与x的函数关系的图象是( )
A.B.
C.D.
8.关于抛物线的说法中,正确的是( )
A.开口向下B.与轴的交点在轴的下方
C.与轴没有交点D.随的增大而减小
9.点关于原点的对称点是
A.B.C.D.
10.如图放置的几何体的左视图是( )
A.B.C.D.
11.如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长是( )
A.B.C.D.
12.如图,正六边形ABCDEF内接于,M为EF的中点,连接DM,若的半径为2,则MD的长度为
A.B.C.2D.1
二、填空题(每题4分,共24分)
13.分别写有数字0,|-2|,-4,,-5的五张卡片,除数字不同外其它均相同,从中任抽一张,那么抽到非负数的概率是_________.
14.如图,在△ABC中,AC=4,BC=6,CD平分∠ACB交AB于D,DE∥BC交AC于E,则DE的长为_____.
15.如图,在菱形中,边长为10,.顺次连结菱形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;顺次连结四边形各边中点,可得四边形;按此规律继续下去….则四边形的周长是_________.
16.如图,在△ABC中,点D,E分别是AC,BC边上的中点,则△DEC的周长与△ABC的周长比等于_______.
17.用一个圆心角90°,半径为8㎝的扇形纸围成一个圆锥,则该圆锥底面圆的半径为 .
18.若顺次连接四边形ABCD各边中点所得四边形为矩形,则四边形ABCD的对角线AC、BD之间的关系为_____.
三、解答题(共78分)
19.(8分)用适当方法解下列方程.
(1) (2)
20.(8分)一个不透明的袋子中装有红、白两种颜色的小球,这些球除颜色外完全相同,其中红球1个,若从中随机摸出一个球,这个球是白球的概率为
(1)求袋子中白球的个数
(2)随机摸出一个球后,放回并搅匀,再随机摸出一个球,请用画树状图或列表的方法,求两次都摸到白球的概率.
21.(8分)如图,直线AB和抛物线的交点是A(0,﹣3),B(5,9),已知抛物线的顶点D的横坐标是1.
(1)求抛物线的解析式及顶点坐标;
(1)在x轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不在,请说明理由;
(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.
22.(10分)如图,在中,,,点在的内部,经过,两点,交于点,连接并延长交于点,以,为邻边作.
(1)判断与的位置关系,并说明理由.
(2)若点是的中点,的半径为2,求的长.
23.(10分)如图,在平行四边形中,过点作,垂足为,连接,为上一点,且.
(1)求证:.
(2)若,,,求的长.
24.(10分)阅读下面内容,并按要求解决问题:
问题:“在平面内,已知分别有2个点,3个点,4个点,5个点,…,个点,其中任意三个点都不在同一条直线上经过每两点画一条直线,它们可以分别画多少条直线?”
探究:为了解决这个问题,希望小组的同学们,设计了如下表格进行探究:(为了方便研究问题,图中每条线段表示过线段两端点的一条直线)
请解答下列问题:
(1)请帮助希望小组归纳,并直接写出结论:当平面内有个点时,直线条数为______;
(2)若某同学按照本题中的方法,共画了28条直线,求该平面内有多少个已知点?
25.(12分)定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.
(1)如图①,在对角互余四边形ABCD中,∠B=60°,且AC⊥BC,AC⊥AD,若BC=1,则四边形ABCD的面积为 ;
(2)如图②,在对角互余四边形ABCD中,AB=BC,BD=13,∠ABC+∠ADC=90°,AD=8,CD=6,求四边形ABCD的面积;
(3)如图③,在△ABC中,BC=2AB,∠ABC=60°,以AC为边在△ABC异侧作△ACD,且∠ADC=30°,若BD=10,CD=6,求△ACD的面积.
26.(12分)如图,四边形是正方形,连接,将绕点逆时针旋转得,连接,为的中点,连接,.
(1)如图1,当时,求证:;
(2)如图2,当时,(1)还成立吗?请说明理由.
参考答案
一、选择题(每题4分,共48分)
1、B
2、A
3、A
4、A
5、B
6、B
7、A
8、C
9、C
10、C
11、C
12、A
二、填空题(每题4分,共24分)
13、
14、2.1
15、
16、1:1.
17、1.
18、AC⊥BD.
三、解答题(共78分)
19、(1),;(2),
20、(1)袋子中白球有2个;(2)(两次都摸到白球)
21、(1),顶点D(1,);(1)C(,0)或(,0)或(,0);(2)
22、(1)是的切线;理由见解析;(2)的长.
23、(1)见解析;(2)
24、(1);(2)该平面内有8个已知点.
25、(1)2;(2)36;(3).
26、(1)详见解析;(2)当时,成立,理由详见解析.
点数
2
3
4
5
…
示意图
…
直线条数
1
…
相关试卷
这是一份山东蒙阴县2023-2024学年数学九上期末学业质量监测模拟试题含答案,共7页。
这是一份山东省泰安市肥城市2023-2024学年数学九上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,把二次函数化成的形式是下列中的,在平面直角坐标系中,点M等内容,欢迎下载使用。
这是一份2023-2024学年新疆乌鲁木齐市数学九上期末学业质量监测试题含答案,共7页。试卷主要包含了下列实数中,介于与之间的是等内容,欢迎下载使用。