江苏省无锡市积余中学2023-2024学年九年级数学第一学期期末教学质量检测模拟试题含答案
展开
这是一份江苏省无锡市积余中学2023-2024学年九年级数学第一学期期末教学质量检测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,已知关于x的方程等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.某校办工厂生产的某种产品,今年产量为200件,计划通过改革技术,使今后两年的产量都比前一年增长一个相同的百分数,使得三年的总产量达到1 400件.若设这个百分数为,则可列方程( )
A.B.
C.D.
2.下列一元二次方程中,两实数根之和为3的是( )
A.B.C.D.
3.小华同学某体育项目7次测试成绩如下(单位:分):9,7,1,8,1,9,1.这组数据的中位数和众数分别为( )
A.8,1B.1,9C.8,9D.9,1
4.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为( )
A.(54+10) cmB.(54+10) cmC.64 cmD.54cm
5.如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点,.若反比例函数经过点C,则k的值等于( )
A.10B.24C.48D.50
6.如图,点的坐标是,是等边角形,点在第一象限,若反比例函数的图象经过点,则的值是( )
A.B.C.D.
7.已知关于x的方程(m+4)x2+2x﹣3m=0是一元二次方程,则m的取值范围是( )
A.m<﹣4B.m≠0C.m≠﹣4D.m>﹣4
8.如图,□ABCD的对角线AC,BD交于点O,CE平分∠BCD交AB于点E,交BD于点F,且∠ABC=60°,AB=2BC,连接OE.下列结论:①EO⊥AC;②S△AOD=4S△OCF;③AC:BD=:7;④FB2=OF•DF.其中正确的是( )
A.①②④B.①③④C.②③④D.①③
9.若点,是函数上两点,则当时,函数值为( )
A.2B.3C.5D.10
10.下列图形中,是轴对称图形但不是中心对称图形的是( )
A.平行四边形B.等腰三角形C.矩形D.正方形
11.如图,等腰直角三角形ABC的腰长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B和A→C的路径向点B、C运动,设运动时间为x(单位:s),四边形PBC Q的面积为y(单位:cm2),则y与x(0≤x≤4)之间的函数关系可用图象表示为( )
A.B.C.D.
12.下列四个结论,①过三点可以作一个圆;②圆内接四边形对角相等;③平分弦的直径垂直于弦;④相等的圆周角所对的弧也相等;不正确的是( )
A.②③B.①③④C.①②④D.①②③④
二、填空题(每题4分,共24分)
13. “永定楼”,作为门头沟区的地标性建筑,因其坐落在永定河畔而得名.为测得其高度,低空无人机在A处,测得楼顶端B的仰角为30°,楼底端C的俯角为45°,此时低空无人机到地面的垂直距离AE为23 米,那么永定楼的高度BC是______米(结果保留根号).
14.如图△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cs∠BDC=,则BC的长为_____.
15.将抛物线先向右平移1个单位长度,再向上平移2个单位长度,得到的抛物线的解析式是______.
16.如图,菱形的顶点C的坐标为,顶点A在x轴的正半轴上.反比例函数的图象经过顶点B,则k的值为__.
17.已知扇形的面积为4π,半径为6,则此扇形的圆心角为_____度.
18.如图,在中,,对角线,点E是线段BC上的动点,连接DE,过点D作DP⊥DE,在射线DP上取点F,使得,连接CF,则周长的最小值为___________.
三、解答题(共78分)
19.(8分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为点E,连接DE,F为线段DE上一点,且∠AFE=∠B.
(1)求证:△ADF∽△DEC;
(2)若AB=4,AD=3, AF=2, 求AE的长.
20.(8分)如图所示,学校准备在教学楼后面搭建一简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为),另外三边利用学校现有总长的铁栏围成,留出2米长门供学生进出.若围成的面积为,试求出自行车车棚的长和宽.
21.(8分)已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点E,点F在边AB上,连接CF交线段BE于点G,CG2=GE•GD.
(1)求证:∠ACF=∠ABD;
(2)连接EF,求证:EF•CG=EG•CB.
22.(10分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N.连接BM,DN.
(1)求证:四边形BMDN是菱形;
(2)若AB=4,AD=8,求MD的长.
23.(10分)如图,在东西方向的海面线上,有,两艘巡逻船和观测点(,,在直线上),两船同时收到渔船在海面停滞点发出的求救信号.测得渔船分别在巡逻船,北偏西和北偏东方向,巡逻船和渔船相距120海里,渔船在观测点北偏东方向.(说明:结果取整数.参考数据:,.)
(1)求巡逻船与观测点间的距离;
(2)已知观测点处45海里的范围内有暗礁.若巡逻船沿方向去营救渔船有没有触礁的危险?并说明理由.
24.(10分)如图,三孔桥横截面的三个孔都呈抛物线形,两个小孔形状、大小都相同,正常水位时,大孔水面常度AB=20米,顶点M距水面6米(即MO=6米),小孔水面宽度BC=6米,顶点N距水面4.5米.航管部门设定警戒水位为正常水位上方2米处借助于图中的平面直角坐标系解答下列问题:
(1)在汛期期间的某天,水位正好达到警戒水位,有一艘顶部高出水面3米,顶部宽4米的巡逻船要路过此处,请问该巡逻船能否安全通过大孔?并说明理由.
(2)在问题(1)中,同时桥对面又有一艘小船准备从小孔迎面通过,小船的船顶高出水面1.5米,顶部宽3米,请问小船能否安全通过小孔?并说明理由.
25.(12分)某小区为改善生态环境,实行生活垃圾的分类处理,将生活垃圾分成三类:厨房垃圾、可回收垃圾和其他垃圾,分别记为,并且设置了相应的垃圾箱“厨房垃圾”箱,“可回收垃圾”箱和“其他垃圾”箱,分别记为.
(1)为了了解居民生活垃圾分类投放的情况,现随机抽取了小区三类垃圾箱中总共吨生活垃圾,数据统计如下图(单位:吨):
请根据以上信息,估计“厨房垃圾”投放正确的概率;
(2)若将三类垃圾随机投入三类垃圾箱,请用画树状图或列表格的方法求出垃圾投放正确的概率.
26.(12分)在矩形中,,,是射线上的点,连接,将沿直线翻折得.
(1)如图①,点恰好在上,求证:∽;
(2)如图②,点在矩形内,连接,若,求的面积;
(3)若以点、、为顶点的三角形是直角三角形,则的长为 .
参考答案
一、选择题(每题4分,共48分)
1、B
2、D
3、D
4、C
5、C
6、D
7、C
8、B
9、B
10、B
11、C
12、D
二、填空题(每题4分,共24分)
13、
14、4
15、
16、1
17、1
18、
三、解答题(共78分)
19、(1)答案见解析;(2).
20、若围成的面积为,自行车车棚的长和宽分别为10米,18米.
21、(1)证明见解析;(2)证明见解析.
22、(1)证明见解析;(2)MD长为1.
23、(1)76海里;(2)没有触礁的危险,理由见解析
24、(1)巡逻船能安全通过大孔,理由见解析;(2)小船不能安全通过小孔,理由见解析.
25、(1);(2).
26、(1)见解析;(2)的面积为;(3)、5、1、
相关试卷
这是一份江苏省无锡市积余教育集团2023-2024学年九年级数学第一学期期末复习检测模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
这是一份江苏省无锡市积余教育集团2023-2024学年数学九上期末考试试题含答案,共7页。试卷主要包含了考生要认真填写考场号和座位序号,下列函数的对称轴是直线的是等内容,欢迎下载使用。
这是一份2023-2024学年江苏省无锡市积余中学八年级数学第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,下列图形,下列运算正确的是,下列长度的线段能组成三角形的是等内容,欢迎下载使用。