2023-2024学年黑龙江省大庆市三站中学数学九上期末综合测试模拟试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每题4分,共48分)
1.小华同学的身高为米,某一时刻他在阳光下的影长为米,与他邻近的一棵树的影长为米,则这棵树的高为( )
A.米B.米C.米D.米
2.平面直角坐标系内,已知线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,将线段AB扩大为原来的2倍后得到对应线段,则端点的坐标为( )
A.(4,4)B.(4,4)或(-4,-4)C.(6,2)D.(6,2)或(-6,-2)
3.将二次函数y=x2的图象向右平移一个单位长度,再向下平移3个单位长度所得的图象解析式为( )
A.y=(x﹣1)2+3B.y=(x+1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣3
4.如图,在平面直角坐标系中,正方形的顶点在坐标原点,点的坐标为,点在第二象限,且反比例函数的图像经过点,则的值是( )
A.-9B.-8C.-7D.-6
5.如图,△ABC中,∠B=70°,则∠BAC=30°,将△ABC绕点C顺时针旋转得△EDC.当点B的对应点D恰好落在AC上时,∠CAE的度数是( )
A.30°B.40°C.50°D.60°
6.如图,点A、B、C在⊙O上,则下列结论正确的是( )
A.∠AOB=∠ACB
B.∠AOB=2∠ACB
C.∠ACB的度数等于的度数
D.∠AOB的度数等于的度数
7.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )
A.B.C.-D.
8.如图,在△ABC中,点D、E分别在边BA、CA的延长线上, =2,那么下列条件中能判断DE∥BC的是( )
A.B.C.D.
9.已知点是一次函数的图像和反比例函数的图象的交点,当一次函数的值大于反比例函数的值时,的取值范围是( )
A.或B.
C.或D.
10.如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=110°,则∠α=( )
A.70°B.110°C.120°D.140°
11.一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、2、1.随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之和为偶数的概率是( )
A.B.
C.D.
12.已知平面直角坐标系中,点关于原点对称的点的坐标是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.某型号的冰箱连续两次降价,每台售价由原来的2370元降到了1160元,若设平均每次降价的百分率为,则可列出的方程是__________________________________.
14.一个扇形的弧长是,它的面积是,这个扇形的圆心角度数是_____.
15.如图,王师傅在一块正方形钢板上截取了宽的矩形钢条,剩下的阴影部分的面 积是,则原来这块正方形钢板的边长是__________cm.
16.二次函数y=ax2+bx+c(a,b,c 为常数,且a≠0)的图像上部分点的横坐标x和纵
坐标y的对应值如下表
关于x的方程ax2+bx+c=0一个负数解x1满足k<x1<k+1(k为整数),则k=________.
17.把多项式分解因式的结果是 .
18.如图,、是两个等边三角形,连接、.若,,,则__________.
三、解答题(共78分)
19.(8分)小琴和小江参加学校举行的“经典诵读"比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母依次表示这三个诵读材料),将这三个字母分别写在张完全相同的不透明卡片的正面上,把这张卡片背面朝上洗匀后放在桌面上,比赛时小琴先从中随机抽取一张卡片, 记录下卡精上的内容,放回后洗匀,再由小江从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.
小琴诵读《论语》的概率是 .
请用列表法或画树状图(树形图)法求小琴和小江诵读两个不同材料的概率.
20.(8分)在一个不透明的盒子中装有张卡片,张卡片的正面分别标有数字,,,,,这些卡片除数字外,其余都相同.
(1)从盒子中任意抽取一张卡片,恰好抽到标有偶数的卡片的概率是多少?
(2)先从盒子中任意抽取一张卡片,再从余下的张卡片中任意抽取一张卡片,求抽取的张卡片上标有的数字之和大于的概率(画树状图或列表求解).
21.(8分)如图,为测量一条河的宽度, 某学习小组在河南岸的点A测得河北岸的树C在点A的北偏东60°方向,然后向东走10米到达B点,测得树C在点B的北偏东30°方向,试根据学习小组的测量数据计算河宽.
22.(10分)在平面直角坐标系中有,为原点,,,将此三角形绕点顺时针旋转得到,抛物线过三点.
(1)求此抛物线的解析式及顶点的坐标;
(2)直线与抛物线交于两点,若,求的值;
(3)抛物线的对称轴上是否存在一点使得为直角三角形.
23.(10分)如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣2,3),B(﹣3,2),C(﹣1,1).
(1)若将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1;
(2)画出△A1B1C1绕原点顺时针旋90°后得到 的△A2B2C2;
(3)若△A′B′C′与△ABC是中心对称图形,则对称中心的坐标为 .
24.(10分)关于x的一元二次方程有两个不相等的实数根.
(1)求m的取值范围;
(2)若,是一元二次方程的两个根,且,求m的值.
25.(12分)某产品每件成本10元,试销阶段每件产品的销售单价x(元/件)与每天销售量y(件)之间的关系如下表.
(1)直接写出:y与x之间的函数关系 ;
(2)按照这样的销售规律,设每天销售利润为w(元)即(销售单价﹣成本价)x每天销售量;求出w(元)与销售单价x(元/件)之间的函数关系;
(3)销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
26.(12分)如图,大圆的弦AB、AC分别切小圆于点M、N.
(1)求证:AB=AC;
(2)若AB=8,求圆环的面积.
参考答案
一、选择题(每题4分,共48分)
1、B
2、B
3、C
4、B
5、C
6、B
7、A
8、D
9、C
10、D
11、D
12、C
二、填空题(每题4分,共24分)
13、
14、120°
15、
16、-1
17、m(4m+n)(4m﹣n).
18、1
三、解答题(共78分)
19、;
20、(1);(2)0.6
21、米
22、(1);点;(2);(3)存在,Q1(1,-1),Q2(1,2), Q3(1,4), Q4(1,-5).
23、(1)答案见解析;(2)答案见解析;(3)(1,0)
24、(1)m<;(2)﹣1.
25、(1)y=﹣10x+1;(2)w=﹣10x2+500x﹣10;(3)销售单价定为 25 元时,每天销售利润最大,最大销售利润 2250 元.
26、(1)证明见解析;(2)S圆环=16π
x
…
-1
0
1
2
3
…
y
…
-3
-3
-1
3
9
…
x(元/件)
15
18
20
22
…
y(件)
250
220
200
180
…
2023-2024学年黑龙江省大庆市一中学数学九上期末质量检测模拟试题含答案: 这是一份2023-2024学年黑龙江省大庆市一中学数学九上期末质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列说法中错误的是,下列事件是必然事件的是,下列命题正确的是,下列方程是一元二次方程的是等内容,欢迎下载使用。
2023-2024学年黑龙江省大庆市第五十五中学数学九上期末质量跟踪监视试题含答案: 这是一份2023-2024学年黑龙江省大庆市第五十五中学数学九上期末质量跟踪监视试题含答案,共8页。试卷主要包含了方程组的解的个数为,如图,中,,,,则等内容,欢迎下载使用。
2023-2024学年黑龙江省大庆市第十九中学数学九上期末学业质量监测模拟试题含答案: 这是一份2023-2024学年黑龙江省大庆市第十九中学数学九上期末学业质量监测模拟试题含答案,共7页。试卷主要包含了若点A等内容,欢迎下载使用。