2023-2024学年四川省德阳市名校数学九上期末学业水平测试试题含答案
展开
这是一份2023-2024学年四川省德阳市名校数学九上期末学业水平测试试题含答案,共10页。试卷主要包含了答题时请按要求用笔,一元二次方程的根的情况为等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题4分,共48分)
1.如图,一次函数分别与轴、轴交于点、,若sin,则的值为( )
A.B.C.D.
2.如图,以AB为直径,点O为圆心的半圆经过点C,若AC=BC=,则图中阴影部分的面积是( )
A.B.C.D.
3.为了迎接春节,某厂10月份生产春联万幅,计划在12月份生产春联万幅,设11、12月份平均每月增长率为根据题意,可列出方程为( )
A.B.
C.D.
4.对于二次函数y=-(x+1)2+3,下列结论:①其图象开口向下;②其图象的对称轴为直线x=1;③其图象的顶点坐标为(-1,3);④当x>1时,y随x的增大而减小.其中正确结论的个数为( )
A.1B.2C.3D.4
5.如图是一根空心方管,则它的主视图是( )
A.B.C.D.
6.如图,在△ABC中,D,E,F分别为BC,AB,AC上的点,且EF∥BC,FD∥AB,则下列各式正确的是( )
A.B.C.D.
7.一元二次方程的根的情况为( )
A.有两个相等的实数根B.有两个不相等的实数根
C.没有实数根D.只有一个实数根
8.如图,在中,,,点从点沿边,匀速运动到点,过点作交于点,线段,,,则能够反映与之间函数关系的图象大致是( )
A.B.C.D.
9.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂第二季度平均每月的增长率为,那么满足的方程是( )
A.B.
C.D.
10.关于x的方程x2﹣mx+6=0有一根是﹣3,那么这个方程的另一个根是( )
A.﹣5B.5C.﹣2D.2
11.若点在反比例函数的图象上,且,则下列各式正确的是( )
A.B.C.D.
12.如图是二次函数图象的一部分,则关于的不等式的解集是( )
A.B.C.D.
二、填空题(每题4分,共24分)
13.如图,在圆中,是弦,点是劣弧的中点,联结,平分,联结、,那么__________度.
14.如图,在中,,点为的中点.将绕点逆时针旋转得到,其中点的运动路径为,则图中阴影部分的面积为______.
15.阅读对话,解答问题:
分别用、表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,则在(,)的所有取值中使关于的一元二次方程有实数根的概率为_________.
16.如图,已知△AOB是直角三角形,∠AOB=90°,∠B=30°,点A在反比例函数y=的图象上,若点B在反比例函数y=的图象上,则的k值为_______.
17.某架飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y=60t-t2,这架飞机着陆后滑行最后150m所用的时间是_______s.
18.一次函数与反比例函数()的图象如图所示,当时,自变量的取值范围是__________.
三、解答题(共78分)
19.(8分)如图,AB=3AC,BD=3AE,又BD∥AC,点B,A,E在同一条直线上.求证:△ABD∽△CAE
20.(8分)如图,点P是上一动点,连接AP,作∠APC=45°,交弦AB于点C.AB=6cm.
小元根据学习函数的经验,分别对线段AP,PC,AC的长度进行了测量.
下面是小元的探究过程,请补充完整:
(1)下表是点P是上的不同位置,画图、测量,得到线段AP,PC,AC长度的几组值,如下表:
①经测量m的值是 (保留一位小数).
②在AP,PC,AC的长度这三个量中,确定的长度是自变量,的长度和 的长度都是这个自变量的函数;
(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数图象;
(3)结合函数图象,解决问题:当△ACP为等腰三角形时,AP的长度约为 cm(保留一位小数).
21.(8分)从三角形一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.
(1)如图1,在△ABC中,∠A=40°,∠B=60°,当∠BCD=40°时,证明:CD为△ABC的完美分割线.
(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD是以AC为底边的等腰三角形,求∠ACB的度数.
(3)如图2,在△ABC中,AC=2,BC=2,CD是△ABC的完美分割线,△ACD是以CD为底边的等腰三角形,求CD的长.
22.(10分)等腰中,,作的外接圆⊙O.
(1)如图1,点为上一点(不与A、B重合),连接AD、CD、AO,记与的交点为.
①设,若,请用含与的式子表示;
②当时,若,求的长;
(2)如图2,点为上一点(不与B、C重合),当BC=AB,AP=8时,设,求为何值时,有最大值?并请直接写出此时⊙O的半径.
23.(10分)如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为1.6m,顶棚到路面的距离是6.4m,点B到路面的距离为4.0m.请求出路面CD的宽度.(精确到0.1m)
24.(10分)如图,已知二次函数与轴交于两点(点在点的左边),与轴交于点.
(1)写出两点的坐标;
(2)二次函数,顶点为.
①直接写出二次函数与二次函数有关图象的两条相同的性质;
②是否存在实数,使为等边三角形?如存在,请求出的值;如不存在,请说明理由;
③若直线与抛物线交于两点,问线段的长度是否发生变化?如果不会,请求出的长度;如果会,请说明理由.
25.(12分)如图,一次函数与反比例函数的图象交于,点两点,交轴于点.
(1)求、的值.
(2)请根据图象直接写出不等式的解集.
(3)轴上是否存在一点,使得以、、三点为顶点的三角形是为腰的等腰三角形,若存在,请直接写出符合条件的点的坐标,若不存在,请说明理由.
26.(12分)在的方格纸中,的三个顶点都在格点上.
在图1中画出线段BD,使,其中D是格点;
在图2中画出线段BE,使,其中E是格点.
参考答案
一、选择题(每题4分,共48分)
1、D
2、A
3、C
4、C
5、B
6、D
7、B
8、D
9、B
10、C
11、C
12、D
二、填空题(每题4分,共24分)
13、120
14、
15、.
16、-3
17、1
18、或
三、解答题(共78分)
19、见解析
20、(1)①3.0;②AP的长度是自变量,PC的长度和AC的长度都是这个自变量的函数;(答案不唯一);(2)见解析; (3)2.3或4.2
21、(1)证明见解析;(2)∠ACB=96°;(3)CD的长为-1.
22、(1)①;②;(2)PB=5时,S有最大值,此时⊙O的半径是.
23、11.3m.
24、(1);(2)①对称轴都为直线或顶点的横坐标为2;都经过两点;②存在实数,使为等边三角形,;③线段的长度不会发生变化,值为1.
25、 (1),;(2)或;(3)存在,点的坐标是或或.
26、(1)画图见解析;(2)画图见解析.
AP/cm
0
1.00
2.00
3.00
4.00
5.00
6.00
PC/cm
0
1.21
2.09
2.69
m
2.82
0
AC/cm
0
0.87
1.57
2.20
2.83
3.61
6.00
相关试卷
这是一份广西省来宾市名校2023-2024学年数学九上期末学业水平测试试题含答案,共7页。试卷主要包含了已知,则下列各式中正确的是等内容,欢迎下载使用。
这是一份2023-2024学年湖南省湘潭市名校数学九上期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
这是一份陕西省榆林市名校2023-2024学年数学九上期末学业水平测试试题含答案,共8页。