2023-2024学年上海市黄浦区名校九年级数学第一学期期末学业质量监测试题含答案
展开学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.某射击运动员在同一条件下的射击成绩记录如表:
根据表中数据,估计这位射击运动员射击一次时“射中9环以上”的概率为( )
A.0.78B.0.79C.0.85D.0.80
2.如图,在一幅长80cm,宽50 cm的矩形树叶画四周镶一条金色的纸边,制成一幅矩形挂图,若要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,则满足的方程是( )
A.(80+x)(50+x)=5400
B.(80+2x)(50+2x)=5400
C.(80+2x)(50+x)=5400
D.(80+x)(50+2x)=5400
3.如图,正方形的顶点分别在轴和轴上,与双曲线恰好交于的中点. 若,则的值为( )
A.6B.8C.10D.12
4.已知点关于轴的对称点在反比例函数的图像上,则实数的值为( )
A.-3B.C.D.3
5.如图,在中,,垂足为点,一直角三角板的直角顶点与点重合,这块三角板饶点旋转,两条直角边始终与边分别相交于,则在运动过程中,与的关系是( )
A.一定相似B.一定全等C.不一定相似D.无法判断
6.下列图形中一定是相似形的是( )
A.两个菱形B.两个等边三角形C.两个矩形D.两个直角三角形
7.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为( )
A.25°B.20°C.15°D.30°
8.抛物线的顶点坐标是
A.B.C.D.
9.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,使点P′在△ABC内,已知∠AP′B=135°,若连接P′C,P′A:P′C=1:4,则P′A:P′B=( )
A.1:4B.1:5C.2:D.1:
10.下列四个图形是中心对称图形( ).
A.B.C.D.
11.如图,矩形ABCD的顶点D在反比例函数(x<0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,若△BCE的面积是6,则k的值为( )
A.﹣6B.﹣8C.﹣9D.﹣12
12.将半径为5cm的圆形纸片沿着弦AB进行翻折,弦AB的中点与圆心O所在的直线与翻折后的劣弧相交于C点,若OC=3cm,则折痕AB的长是( )
A.B.C.4cm或6cmD.或
二、填空题(每题4分,共24分)
13.有一个二次函数的图象,三位同学分别说了它的一些特点:甲:图象与轴只有一个交点;乙:图象的对称轴是直线丙:图象有最高点,请你写出一个满足上述全部特点的二次函数的解析式__________.
14.如图,△ABC的外心的坐标是____.
15.如图,在圆中,是弦,点是劣弧的中点,联结,平分,联结、,那么__________度.
16.从1,2,3,4,5,6,7,8,9这九个自然数中,任取一个数是奇数的概率是 .
17.平行于梯形两底的直线截梯形的两腰,当两交点之间的线段长度是两底的比例中项时,我们称这条线段是梯形的“比例中线”.在梯形ABCD中,AD//BC,AD=4,BC=9,点E、F分别在边AB、CD上,且EF是梯形ABCD的“比例中线”,那么=_____.
18.如图,在平面直角坐标系中,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(4,1)在AB边上,把△CDB绕点C旋转90°,点D的对应点为点D′,则OD′的长为_________.
三、解答题(共78分)
19.(8分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为扩大销售,增加盈利,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.
(1)每件衬衫降价多少元时,商场平均每天的盈利是1050元?
(2)每件衬衫降价多少元时,商场平均每天盈利最大?最大盈利是多少?
20.(8分)如图,一次函数y1=k1x+b(k1、b为常数,k1≠0)的图象与反比例函数y2=(k2≠0)的图象交于点A(m,1)与点B(﹣1,﹣4).
(1)求反比例函数与一次函数的解析式;
(2)根据图象说明,当x为何值时,k1x+b﹣<0;
(3)若动点P是第一象限内双曲线上的点(不与点A重合),连接OP,过点P作y轴的平行线交直线AB于点C,连接OC,若△POC的面积为3,求点P的坐标.
21.(8分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.
(1)王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b班征集到作品 件,请把图2补充完整;
(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?
(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.
22.(10分)关于x的方程有两个不相等的实数根.
(1)求m的取值范围;
(2)是否存在实数m,使方程的两个实数根的倒数和等于0?若存在,求出m的值;若不存在,请说明理由.
23.(10分)如图,矩形AOBC放置在平面直角坐标系xOy中,边OA在y轴的正半轴上,边OB在x轴的正半轴上,抛物线的顶点为F,对称轴交AC于点E,且抛物线经过点A(0,2),点C,点D(3,0).∠AOB的平分线是OE,交抛物线对称轴左侧于点H,连接HF.
(1)求该抛物线的解析式;
(2)在x轴上有动点M,线段BC上有动点N,求四边形EAMN的周长的最小值;
(3)该抛物线上是否存在点P,使得四边形EHFP为平行四边形?如果存在,求出点P的坐标;如果不存在,请说明理由.
24.(10分)如图,在四边形ABCD中,AB∥DC,BC>AD,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)试探究:△BEF可以为等腰三角形吗?若能,求t的值;若不能,请说明理由.
25.(12分)在正方形ABCD中,AB=6,M为对角线BD上任意一点(不与B、D重合),连接CM,过点M作MN⊥CM,交AB(或AB的延长线)于点N,连接CN.
感知:如图①,当M为BD的中点时,易证CM=MN.(不用证明)
探究:如图②,点M为对角线BD上任一点(不与B、D重合).请探究MN与CM的数量关系,并证明你的结论.
应用:(1)直接写出△MNC的面积S的取值范围 ;
(2)若DM:DB=3:5,则AN与BN的数量关系是 .
26.(12分)为了创建国家级卫生城区,某社区在九月份购买了甲、乙两种绿色植物共1100盆,共花费了27000元.已知甲种绿色植物每盆20元,乙种绿色植物每盆30元.
(1)该社区九月份购买甲、乙两种绿色植物各多少盆?
(2)十月份,该社区决定再次购买甲、两种绿色植物.已知十月份甲种绿色植物每盆的价格比九月份的价格优惠元,十月份乙种绿色植物每盆的价格比九月份的价格优惠.因创卫需要,该社区十月份购买甲种绿色植物的数量比九月份的数量增加了,十为份购买乙种绿色植物的数量比九月份的数量增加了.若该社区十月份的总花费与九月份的总花费恰好相同,求的值.
参考答案
一、选择题(每题4分,共48分)
1、D
2、B
3、D
4、A
5、A
6、B
7、A
8、A
9、C
10、C
11、D
12、D
二、填空题(每题4分,共24分)
13、(答案不唯一)
14、
15、120
16、.
17、
18、3或
三、解答题(共78分)
19、(1)每件衬衫降价5元或25元时,商场平均每天的盈利是1050元.(2)每件衬衫降价15元时,商场平均每天的盈利最大,最大盈利是1250元.
20、(1)y1=x﹣3;;(2)x<﹣1或0<x<4;(3)点P的坐标为或(1,4)或(2,2)
21、(1)抽样调查;12;3;(2)60;(3).
22、(1)m的取值范围为m>﹣1且m≠1;(2)不存在符合条件的实数m,理由见解析 .
23、(1)y=x2﹣x+2;(2);(3)不存在点P,使得四边形EHFP为平行四边形,理由见解析.
24、(1)见解析;(2)DC=6.4cm;(3)当△EFB为等腰三角形时,t的值为秒或秒或秒.
25、探究:见解析;应用:(1)9≤S<1;(2)AN=6BN.
26、(1)该社区九月份购买甲、乙两种绿色植物分别为600,500盆;(2)a的值为1
射击次数
100
200
400
1000
“射中9环以上”的次数
78
158
321
801
“射中9环以上”的频率
0.78
0.79
0.8025
0.801
辽宁省本溪市名校2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案: 这是一份辽宁省本溪市名校2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,sin45°的值等于等内容,欢迎下载使用。
上海市长宁区名校2023-2024学年数学九年级第一学期期末学业质量监测试题含答案: 这是一份上海市长宁区名校2023-2024学年数学九年级第一学期期末学业质量监测试题含答案,共7页。
上海市闵行区文莱中学2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案: 这是一份上海市闵行区文莱中学2023-2024学年数学九年级第一学期期末学业质量监测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。