黑龙江省绥化市2023-2024学年九上数学期末学业质量监测模拟试题含答案
展开
这是一份黑龙江省绥化市2023-2024学年九上数学期末学业质量监测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.抛物线的顶点坐标是( )
A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)
2.在中,点在线段上,请添加一个条件使,则下列条件中一定正确的是( )
A.B.
C.D.
3.一组数据3,7,9,3,4的众数与中位数分别是( )
A.3,9B.3,3C.3,4D.4,7
4.如图,转盘的红色扇形圆心角为120°.让转盘自由转动2次,指针1次落在红色区域,1次落在白色区域的概率是( )
A.B.C.D.
5.圆的面积公式S=πR2中,S与R之间的关系是( )
A.S是R的正比例函数B.S是R的一次函数
C.S是R的二次函数D.以上答案都不对
6.下列一元二次方程中,没有实数根的是( ).
A.B.
C.D.
7.在同一坐标系中一次函数和二次函数的图象可能为( )
A.B.C.D.
8.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,下列式子正确的是( )
A.sinA=B.csA=C.tanA=D.csB=
9.如图,一个透明的玻璃正方体表面嵌有一根黑色的铁丝.这根铁丝在正方体俯视图中的形状是( )
A.B.C.D.
10.如图,小明同学设计了一个测量圆直径的工具,标有刻度的尺子.在点钉在一起.并使它们保持垂直,在测直径时,把点靠在圆周上.读得刻度个单位,个单位,则圆的直径为( )
A.12个单位B.10个单位C.11个单位D.13个单位
二、填空题(每小题3分,共24分)
11.如图、正比例函数与反比例函数的图象交于(1,2),则在第一象限内不等式的解集为_____________.
12.由4m=7n,可得比例式=____________.
13.如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40 m,点C是的中点,且CD=10 m,则这段弯路所在圆的半径为__________m.
14.如图,RtΔABC绕直角顶点C顺时针旋转90°,得到ΔDEC,连接AD,若∠BAC=25°,则∠ADE=_________
15.某居民小区为了解小区500户居民家庭平均月使用塑料袋的数量情况,随机调查了10户居民家庭月使用塑料袋的数量,结果如下(单位:只):65,70,85,74,86,78,74,92,82,1.
根据统计情况,估计该小区这500户家庭每月一共使用塑料袋_________只.
16.已知圆锥的底面圆的半径是,母线长是,则圆锥的侧面积是________.
17.抛物线y=﹣3(x﹣1)2+2的开口向_____,对称轴为_____,顶点坐标为_____.
18.□ABCD的两条对角线AC、BD相交于O,现从下列条件:①AC⊥BD②AB=BC③AC=BD ④∠ABD=∠CBD中随机取一个作为条件,可推出□ABCD是菱形的概率是_________
三、解答题(共66分)
19.(10分)如图,在矩形ABCD中,E为AD边上的一点,过C点作CF⊥CE交AB的延长线于点F.
(1)求证:△CDE∽△CBF;
(2)若B为AF的中点,CB=3,DE=1,求CD的长.
20.(6分)如图,的三个顶点在平面直角坐标系中正方形的格点上.
(1)求的值;
(2)点在反比例函数的图象上,求的值,画出反比例函数在第一象限内的图象.
21.(6分)学校想知道九年级学生对我国倡导的“一带一路”的了解程度,随机抽取部分九年级学生进行问卷调查,问卷设有4个选项(每位被调查的学生必选且只选一项):A.非常了解.B.了解.C.知道一点.D.完全不知道.将调查的结果绘制如下两幅不完整的统计图,请根据两幅统计图中的信息,解答下列问题:
(1)求本次共调查了多少学生?
(2)补全条形统计图;
(3)该校九年级共有600名学生,请你估计“了解”的学生约有多少名?
(4)在“非常了解”的3人中,有2名女生,1名男生,老师想从这3人中任选两人做宣传员,请用列表或画树状图法求出被选中的两人恰好是一男生一女生的概率.
22.(8分)如图,AB是⊙O的直径,点P是AB上一点,且点P是弦CD的中点.
(1)依题意画出弦CD,并说明画图的依据;(不写画法,保留画图痕迹)
(2)若AP=2,CD=8,求⊙O的半径.
23.(8分)如图,反比例函数的图象经过点,直线与双曲线交于另一点,作轴于点,轴于点,连接.
(1)求的值;
(2)若,求直线的解析式;
(3)若,其它条件不变,直接写出与的位置关系.
24.(8分)如图,王乐同学在晩上由路灯走向路灯.当他行到处时发现,他往路灯下的影长为2m,且恰好位于路灯的正下方,接着他又走了到处,此时他在路灯下的影孑恰好位于路灯的正下方(已知王乐身高,路灯高).
(1)王乐站在处时,在路灯下的影子是哪条线段?
(2)计算王乐站在处时,在路灯下的影长;
(3)计算路灯的高度.
25.(10分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,1.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).
(1)请你用画树状图或列表的方法,写出点M所有可能的坐标;
(2)求点M(x,y)在函数y=﹣的图象上的概率.
26.(10分)如图,是的直径,点在的延长线上,平分交于点,且的延长线,垂足为点.
(1)求证:直线是的切线;
(2)若,,求的长.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、B
3、C
4、C
5、C
6、D
7、A
8、A
9、A
10、B
二、填空题(每小题3分,共24分)
11、x>1
12、
13、25m
14、20°
15、2
16、
17、下 直线x=1 (1,2)
18、
三、解答题(共66分)
19、(1)证明见解析;(2)CD=
20、(1);(2),图见解析
21、(1)30;(2)作图见解析;(3)240;(4).
22、(1)画图见解析,依据:平分弦(非直径)的直径垂直于弦;(2)⊙O的半径为1.
23、 (1) ; (2) ;(3) BC∥AD.
24、(1)线段CP为王乐在路灯B下的影子;(2)王乐站在Q处时,在路灯A下的影长为1.5m;(3)路灯A的高度为12m
25、(1)树状图见解析,则点M所有可能的坐标为:(1,﹣1),(1,﹣2),(1,1),(1,﹣1),(1,﹣2),(1,1),(2,﹣1),(2,﹣2),(2,1);(2).
26、(1)见解析;(2)
相关试卷
这是一份黑龙江省哈尔滨市阿城区朝鲜族中学2023-2024学年九上数学期末学业质量监测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,抛物线的对称轴是,下列说法正确的是,已知,则的值是等内容,欢迎下载使用。
这是一份2023-2024学年陕西师大附中九上数学期末学业质量监测模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,将抛物线y=﹣等内容,欢迎下载使用。
这是一份2023-2024学年林芝九上数学期末学业质量监测模拟试题含答案,共7页。试卷主要包含了的倒数是,点P,关于的一元二次方程的根的情况是等内容,欢迎下载使用。