福建省泉州市泉港区2023-2024学年九上数学期末考试试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.在下列图形中,是中心对称图形而不是轴对称图形的是( )
A.圆B.等边三角形C.梯形D.平行四边形
2.如图在中,弦于点于点,若则的半径的长为( )
A.B.C.D.
3.如图,菱形ABCD中,∠B=70°,AB=3,以AD为直径的⊙O交CD于点E,则弧DE的长为( )
A.πB.πC.πD.π
4.如图,将n个边长都为2的正方形按如图所示摆放,点A1、A2、A3,…,An分别是正方形的中心,则这n个正方形重叠的面积之和是( )
A.nB.n-1
C.4nD.4(n-1)
5.某学校组织创城知识竞赛,共设有20道试题,其中有:社会主义核心价值观试题3道,文明校园创建标准试题6道,文明礼貌试题11道.学生小宇从中任选一道试题作答,他选中文明校园创建标准试题的概率是( )
A.B.C.D.
6.将点A(﹣3,4)绕原点顺时针方向旋转180°后得到点B,则点B的坐标为( )
A.(3,﹣4)B.(﹣4,3)C.(﹣4,﹣3)D.(﹣3,﹣4)
7.二次函数的图象如图,有下列结论:①,②,③时,,④,⑤当且时,,⑥当时,.其中正确的有( )
A.①②③B.②④⑥C. ②⑤⑥D.②③⑤
8.如图,平行四边形的顶点在双曲线上,顶点在双曲线上,中点恰好落在轴上,已知,则的值为( )
A.-8B.-6C.-4D.-2
9.已知反比例函数y=﹣,下列结论不正确的是( )
A.函数的图象经过点(﹣1,3)B.当x<0时,y随x的增大而增大
C.当x>﹣1时,y>3D.函数的图象分别位于第二、四象限
10.下列图形中既是中心对称图形又是轴对称图形的是( )
A.B.
C.D.
二、填空题(每小题3分,共24分)
11.如图,一抛物线与轴相交于,两点,其顶点在折线段上移动,已知点,,的坐标分别为,,,若点横坐标的最小值为0,则点横坐标的最大值为______.
12.计算若,那么a2019 +b2020=____________.
13.一个质地均匀的小正方体,六个面分别标有数字“”“”“”“”“”“”,随机掷一次小正方体,朝上一面的数字是奇数的概率是_____.
14.如图,边长为的正方形网格中,的顶点都在格点上,则的面积为_______ ; 若将绕点顺时针旋转,则顶点所经过的路径长为__________.
15.如图,E是▱ABCD的BC边的中点,BD与AE相交于F,则△ABF与四边形ECDF的面积之比等于_____.
16.已知x=2是关于x的方程x2- 3x+k= 0的一个根,则常数k的值是___________.
17.已知平行四边形中,,且于点,则_____.
18.点P(3,﹣4)关于原点对称的点的坐标是_____.
三、解答题(共66分)
19.(10分)如图,抛物线与x轴交于A、B两点,与y轴交C点,点A的坐标为(2,0),点C的坐标为(0,3)它的对称轴是直线
(1)求抛物线的解析式;
(2)M是线段AB上的任意一点,当△MBC为等腰三角形时,求M点的坐标.
20.(6分)已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.
(1)求证:OE=OF;
(2)若点O为CD的中点,求证:四边形DECF是矩形.
21.(6分)用适当的方法解方程:
(1)x2+2x=0
(2)x2﹣4x+1=0
22.(8分)如图,是线段上--动点,以为直径作半圆,过点作交半圆于点,连接.已知,设两点间的距离为,的面积为.(当点与点或点重合时,的值为)请根据学习函数的经验,对函数随自变量的变化而变化的规律进行探究. (注: 本题所有数值均保留一位小数)
通过画图、测量、计算,得到了与的几组值,如下表:
补全表格中的数值: ; ; .
根据表中数值,继续描出中剩余的三个点,画出该函数的图象并写出这个函数的一条性质;
结合函数图象,直接写出当的面积等于时,的长度约为___ _.
23.(8分)解方程
(1)2x2﹣6x﹣1=0
(2)(x+5)2=6(x+5)
24.(8分)某商店经销的某种商品,每件成本为30元.经市场调查,当售价为每件70元时,可销售20件.假设在一定范围内,售价每降低2元,销售量平均增加4件.如果降价后商店销售这批商品获利1200元,问这种商品每件售价是多少元?
25.(10分)某景区平面图如图1所示,为边界上的点.已知边界是一段抛物线,其余边界均为线段,且,抛物线顶点到的距离.以所在直线为轴,所在直线为轴,建立平面直角坐标系.
求边界所在抛物线的解析式;
如图2,该景区管理处欲在区域内围成一个矩形场地,使得点在边界上,点在边界上,试确定点的位置,使得矩形的周长最大,并求出最大周长.
26.(10分)商场销售某种冰箱,该种冰箱每台进价为2500元,已知原销售价为每台2900元时,平均每天能售出8台.若在原销售价的基础上每台降价50元,则平均每天可多售出4台.设每台冰箱的实际售价比原销售价降低了元.
(1)填表:
(2)商场为使这种冰箱平均每天的销售利润达到最大时,则每台冰箱的实际售价应定为多少元?
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、A
4、B
5、B
6、A
7、D
8、C
9、C
10、B
二、填空题(每小题3分,共24分)
11、7
12、0
13、.
14、3.5;
15、
16、2
17、60°
18、(﹣3,4).
三、解答题(共66分)
19、(1)
(2)M点坐标为(0,0)或
20、证明见解析
21、(1)x1=0,x2=﹣2;(2)x1=2,x2=2.
22、(1)3.1,9.3,7.3;(2)见解析;(3)或.
23、(1);(2)x=﹣5或x=1.
24、每件商品售价60元或50元时,该商店销售利润达到1200元.
25、(1)();(2)点与点重合,取最大值.
26、(1),;(2)1.
每天的销售量/台
每台销售利润/元
降价前
8
400
降价后
福建省泉州市泉港区2023-2024学年九年级上学期期末数学试题(含答案): 这是一份福建省泉州市泉港区2023-2024学年九年级上学期期末数学试题(含答案),共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023-2024学年福建省泉州泉港区四校联考数学九上期末考试试题含答案: 这是一份2023-2024学年福建省泉州泉港区四校联考数学九上期末考试试题含答案,共8页。试卷主要包含了下列事件是必然事件的是,下列事件是必然事件的等内容,欢迎下载使用。
福建省泉州市泉港区2023-2024学年九年级上学期11月期中数学试题: 这是一份福建省泉州市泉港区2023-2024学年九年级上学期11月期中数学试题,共2页。