河南省商丘梁园区六校联考2023-2024学年九年级数学第一学期期末调研试题含答案
展开
这是一份河南省商丘梁园区六校联考2023-2024学年九年级数学第一学期期末调研试题含答案,共8页。试卷主要包含了已知反比例函数的图象经过点等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.若三角形的两边长分别是4和6,第三边的长是方程x2-5x+6=0的一个根,则这个三角形的周长是( )
A.13B.16C.12或13D.11或16
2.为坐标原点,点、分别在轴和轴上,的内切圆的半径长为( )
A.B.C.D.
3.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为( )
A.30°B.45° C .60°C.90°
4.用配方法解一元二次方程,配方后的方程是( )
A.B.C.D.
5.如图,在△ABC中,点D是BC的中点,点E是AC的中点,若DE=3,则AB等于( )
A.4B.5C.5.5D.6
6.若反比例函数的图像经过点,则下列各点在该函数图像上的为( )
A.B.C.D.
7.一条排水管的截面如图所示,已知排水管的半径,水面宽,则截面圆心到水面的距离是( )
A.3B.4C.D.8
8.已知反比例函数的图象经过点(1,2),则它的图象也一定经过( )
A.(1,﹣2)B.(﹣1,2)C.(﹣2,1)D.(﹣1,﹣2)
9.下列由几何图形组合的图案中,既是轴对称图形又是中心对称图形的是( )
A.B.C.D.
10.在一幅长60 cm、宽40 cm的长方形风景画的四周镶一条金色纸边,制成一幅长方形挂图,如图.如果要使整个挂图的面积是2816 cm2,设金色纸边的宽为x cm,那么x满足的方程是( )
A.(60+2x)(40+2x)=2816
B.(60+x)(40+x)=2816
C.(60+2x)(40+x)=2816
D.(60+x)(40+2x)=2816
二、填空题(每小题3分,共24分)
11.当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为 ▲ cm.
12.已知三角形的两边分别是3和4,第三边的数值是方程x2﹣9x+14=0的根,则这个三角形的周长为_____.
13.如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画,若,则阴影部分图形的周长为______结果保留.
14.设a,b是方程x2+x﹣2018=0的两个实数根,则(a﹣1)(b﹣1)的值为_____.
15.不等式组的整数解的和是__________.
16.关于x的方程x2﹣3x﹣m=0的两实数根为x1,x2,且,则m的值为_____.
17.高为8米的旗杆在水平地面上的影子长为6米,同一时刻测得附近一个建筑物的影子长30米,则此建筑物的高度为_____米.
18.如图,在平面直角坐标系xOy中,点A在函数y=(x>0)的图象上,AC⊥x轴于点C,连接OA,则△OAC面积为_____.
三、解答题(共66分)
19.(10分)如图,在平面直角坐标系中,点A、B的坐标分别是(0,3)、(-4,0).
(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O、B对应点分别是E、F,请在图中面出△AEF;
(2)以点O为位似中心,将三角形AEF作位似变换且缩小为原来的在网格内画出一个符合条件的
20.(6分)如图,在矩形ABCD中,AB=4,BC=6,点M是BC的中点.
(1)在AM上求作一点E,使△ADE∽△MAB(尺规作图,不写作法);
(2)在(1)的条件下,求AE的长.
21.(6分)如图, 已知抛物线的对称轴是直线x=3,且与x轴相交于A,B两点(B点在A点右侧)与y轴交于C点 .
(1)求抛物线的解析式和A、B两点的坐标;
(2)若点P是抛物线上B、C两点之间的一个动点(不与B、C重合),则是否存在一点P,使△PBC的面积最大.若存在,请求出△PBC的最大面积;若不存在,试说明理由;
(3)若M是抛物线上任意一点,过点M作y轴的平行线,交直线BC于点N,当MN=3时,求M点的坐标 .
22.(8分)已知二次函数(m 为常数).
(1)证明:不论 m 为何值,该函数的图像与 x 轴总有两个公共点;
(2)当 m 的值改变时,该函数的图像与 x 轴两个公共点之间的距离是否改变?若不变, 请求出距离;若改变,请说明理由.
23.(8分)如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D ,BE⊥AB,垂足为B,BE=CD连接CE,DE.
(1)求证:四边形CDBE是矩形
(2)若AC=2 ,∠ABC=30°,求DE的长
24.(8分)意外创伤随时可能发生,急救是否及时、妥善,直接关系到病人的安危.为普及急救科普知识,提高学生的急救意识与现场急救能力,某校开展了急救知识进校园培训活动.为了解七、八年级学生(七、八年级各有600名学生)的培训效果,该校举行了相关的急救知识竞赛.现从两个年级各随机抽取20名学生的急救知识竞赛成绩(百.分制)进行分析,过程如下:
收集数据:
七年级:79,85,73,80,75,76,87,70,75,94,75,78,81,72,75,80,86,59,83,1.
八年级:92,74,87,82,72,81,94,83,1,83,80,81,71,81,72,1,82,80,70,2.
整理数据:
分析数据:
应用数据:
(1)由上表填空:a= ;b= ;c= ;d= .
(2)估计该校七、八两个年级学生在本次竞赛中成绩在80分及以上的共有多少人?
(3)你认为哪个年级的学生对急救知识掌握的总体水平较好,请说明理由.
25.(10分)如图,AB是⊙O的一条弦,点C是半径OA的中点,过点C作OA的垂线交AB于点E,且与BE的垂直平分线交于点D,连接BD.
(1)求证:BD是⊙O的切线;
(2)若⊙O的半径为2,CE=1,试求BD的长.
26.(10分)某水产品养殖企业为指导该企业某种产品的养殖和销售,对历年市场行情和水产品的养殖情况进行了调查.调查发现这种水产品的每千克售价(元)与销售月份(月)满足关系式+36,而其每千克成本(元)与销售月份(月)满足的函数关系如图所示:
(1)试确定、的值;
(2)求出这种水产品每千克的利润(元)与销售月份(月)之间的函数关系式;
(3)几月份出售这种水产品每千克利润最大?最大利润是多少?
参考答案
一、选择题(每小题3分,共30分)
1、A
2、A
3、C
4、C
5、D
6、C
7、D
8、D
9、A
10、A
二、填空题(每小题3分,共24分)
11、.
12、1.
13、+1.
14、﹣1
15、
16、-1.
17、40
18、1
三、解答题(共66分)
19、(1)图详见解析,E(3,3),F(3,﹣1);(2)详见解析.
20、(1)过D 作DE⊥AM于E,△ADE即为所求;见解析;(2)AE=.
21、(1),点A的坐标为(-2,0),点B的坐标为(8,0);(2)存在点P,使△PBC的面积最大,最大面积是16,理由见解析;(3)点M的坐标为(4-2,)、(2,6)、(6,4)或(4+2,-).
22、(1)详见解析;(2)图像与轴两个公共点之间的距离为
23、(1)见详解,(2)DE =2
24、(1)11,10,78.5,81;(2)600人;(3)八年级学生总体水平较好.理由:两个年级平均分相同,但八年级中位数更大,或八年级众数更大.(言之成理即可).
25、(1)见解析;(2)1
26、(1),;(2);(3)6月份出售这种水产品每千克利润最大,最大利润是每千克11元.
40≤x≤49
50≤x≤59
60≤x≤69
70≤x≤79
80≤x≤89
90≤x≤100
七年级
0
1
0
a
7
1
八年级
1
0
0
7
b
2
平均数
众数
中位数
七年级
78
75
c
八年级
78
d
80.5
相关试卷
这是一份河南省商丘市梁园区2023-2024学年九年级上学期期末数学试题,共26页。试卷主要包含了试卷上不要答题,请用0等内容,欢迎下载使用。
这是一份河南省商丘市梁园区李庄乡第一初级中学2023-2024学年九年级数学第一学期期末检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,设A等内容,欢迎下载使用。
这是一份河南省商丘梁园区六校联考2023-2024学年数学八上期末学业水平测试模拟试题含答案,共7页。试卷主要包含了我们规定等内容,欢迎下载使用。