安徽省淮北市濉溪县2023-2024学年数学九上期末达标检测模拟试题含答案
展开这是一份安徽省淮北市濉溪县2023-2024学年数学九上期末达标检测模拟试题含答案,共10页。
学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.在比例尺为1:100000的城市交通图上,某道路的长为3厘米,则这条道路的实际距离为( )千米.
A.3B.30C.3000D.0.3
2.已知,则( )
A.1B.2C.4D.8
3.在半径为3cm的⊙O中,若弦AB=3,则弦AB所对的圆周角的度数为( )
A.30°B.45°C.30°或150°D.45°或135°
4.下面四个手机应用图标中是轴对称图形的是( )
A.B.C.D.
5.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是( )
A.B.C.D.
6.下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是( )
A.B.
C.D.
7.下列图形中,既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
8.已知圆心O到直线l的距离为d,⊙O的半径r=6,若d是方程x2–x–6=0的一个根,则直线l与圆O的位置关系为( )
A.相切B.相交
C.相离D.不能确定
9.如图,小明想利用太阳光测量楼高,发现对面墙上有这栋楼的影子,小明边移动边观察,发现站在点处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重合且高度恰好相同.此时测得墙上影子高(点在同一条直线上).已知小明身高是,则楼高为( )
A.B.C.D.
10.人教版初中数学教科书共六册,总字数是978000,用科学记数法可将978000表示为( )
A.978×103B.97.8×104C.9.78×105D.0.978×106
二、填空题(每小题3分,共24分)
11.函数中,自变量的取值范围是________.
12.已知△ABC中,AB=5,sinB=,AC=4,则BC=_____.
13.如图等边三角形内接于,若的半径为1,则图中阴影部分的面积等于_________.
14.如图,在Rt△ABC中,∠ACB=90°,AC=BC=,将Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是_____.
15.如果,那么_____.
16.如图,在平面直角坐标系中,原点O是等边三角形ABC的重心,若点A的坐标是(0,3),将△ABC绕点O逆时针旋转,每秒旋转60°,则第2018秒时,点A的坐标为 .
17.如图,点A,B,C在⊙O上,∠A=40度,∠C=20度,则∠B=_____度.
18.河堤横截面如图所示,堤高为4米,迎水坡的坡比为1:(坡比=),那么的长度为____________米.
三、解答题(共66分)
19.(10分)空间任意选定一点,以点为端点,作三条互相垂直的射线,,.这三条互相垂直的射线分别称作轴、轴、轴,统称为坐标轴,它们的方向分别为(水平向前),(水平向右),(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为,,,且的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体所在的面与轴垂直,所在的面与轴垂直,所在的面与轴垂直,如图1所示.若将轴方向表示的量称为几何体码放的排数,轴方向表示的量称为几何体码放的列数,二轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了排列层,用有序数组记作,如图3的几何体码放了排列层,用有序数组记作.这样我们就可用每一个有序数组表示一种几何体的码放方式.
(1)有序数组所对应的码放的几何体是______________;
A.B.C.D.
(2)图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为(______,_______,_______),组成这个几何体的单位长方体的个数为____________个.
(3)为了进一步探究有序数组的几何体的表面积公式,某同学针对若干个单位长方体进行码放,制作了下列表格:
根据以上规律,请直接写出有序数组的几何体表面积的计算公式;(用,,,,,表示)
(4)当,,时,对由个单位长方体码放的几何体进行打包,为了节约外包装材料,我们可以对个单位长方体码放的几何体表面积最小的规律进行探究,请你根据自己探究的结果直接写出使几何体表面积最小的有序数组,这个有序数组为(______,_______, ______),此时求出的这个几何体表面积的大小为____________(缝隙不计)
20.(6分)如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.
(1)如图①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“匀称三角形”.
①请判断“匀称中线”是哪条边上的中线,
②求BC:AC:AB的值.
(2)如图②,△ABC是⊙O的内接三角形,AB>AC,∠BAC=45°,S△ABC=2,将△ABC绕点A逆时针旋转45°得到△ADE,点B的对应点为D,AD与⊙O交于点M,若△ACD是“匀称三角形”,求CD的长,并判断CM是否为△ACD的“匀称中线”.
21.(6分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:
(1)他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在中,是边上的中线,若,求证:.
(2)如图②,已知矩形,如果在矩形外存在一点,使得,求证:.(可以直接用第(1)问的结论)
(3)在第(2)问的条件下,如果恰好是等边三角形,请求出此时矩形的两条邻边与的数量关系.
22.(8分)某公司计划购买若干台电脑,现从两家商场了解到同一种型号的电脑报价均为元,并且多买都有一定的优惠. 各商场的优惠条件如下:
甲商场优惠条件:第一台按原价收费,其余的每台优惠;
乙商场优惠条件:每台优惠.
设公司购买台电脑,选择甲商场时, 所需费用为元,选择乙商场时,所需费用为元,请分别求出与之间的关系式.
什么情况下,两家商场的收费相同?什么情况下,到甲商场购买更优惠?什么情况下,到乙商场购买更优惠?
现在因为急需,计划从甲乙两商场一共买入台某品牌的电脑,其中从甲商场购买台电脑.已知甲商场的运费为每台元,乙商场的运费为每台元,设总运费为元,在甲商场的电脑库存只有台的情况下,怎样购买,总运费最少?最少运费是多少?
23.(8分)如图,将边长为40cm的正方形硬纸板的四个角各剪掉一个同样大小的正方形,剩余部分折成一个无盖的盒子.(纸板的厚度忽略不计).
(1)若该无盖盒子的底面积为900cm2,求剪掉的正方形的边长;
(2)求折成的无盖盒子的侧面积的最大值.
24.(8分)计算:﹣12119+|﹣2|+2cs31°+(2﹣tan61°)1.
25.(10分)如图,一次函数的图象分别交x轴、y轴于C,D两点,交反比例函数图象于A(,4),B(3,m)两点.
(1)求直线CD的表达式;
(2)点E是线段OD上一点,若,求E点的坐标;
(3)请你根据图象直接写出不等式的解集.
26.(10分)如图,已知三个顶点的坐标分别为,,
(1)请在网格中,画出线段关于原点对称的线段;
(2)请在网格中,过点画一条直线,将分成面积相等的两部分,与线段相交于点,写出点的坐标;
(3)若另有一点,连接,则 .
参考答案
一、选择题(每小题3分,共30分)
1、A
2、C
3、D
4、D
5、B
6、D
7、A
8、B
9、B
10、C
二、填空题(每小题3分,共24分)
11、
12、4+或4﹣
13、
14、
15、2
16、
17、1
18、8
三、解答题(共66分)
19、 (1) B;(2) 2,3,2 , 1 ;(3)S(x,y,z)=2(yzS1+xzS2+xyS3);(4)2,2,3,2
20、(1)① “匀称中线”是BE,它是AC边上的中线,②BC:AC:AB=;(2)CD=a,CM不是△ACD的“匀称中线”.理由见解析.
21、(1)详见解析;(2)详见解析;(3)
22、(1),;(2)当购买台时,两家商场的收费相同;当购买电脑台数大于时,甲商场购买更优惠; 当购买电脑台数小于时,乙商场购买更优惠;(3)从甲商场买台,从乙商场买台时,总运费最少,最少运费是元.
23、(1)5cm;(1)最大值是800cm1.
24、2
25、(1);(2);(3)或
26、(1)见解析;(2)见解析,;(3)1.
几何体有序数组
单位长方体的个数
表面上面积为S1的个数
表面上面积为S2的个数
表面上面积为S3的个数
表面积
相关试卷
这是一份安徽省无为县2023-2024学年九上数学期末达标检测模拟试题含答案,共6页。试卷主要包含了考生必须保证答题卡的整洁,已知,则下列结论一定正确的是,下列说法正确的是,一元二次方程的解是等内容,欢迎下载使用。
这是一份安徽省濉溪县联考2023-2024学年九上数学期末综合测试模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,方程,二次函数y=ax2+bx+c等内容,欢迎下载使用。
这是一份2023-2024学年濉溪县九上数学期末质量检测模拟试题含答案,共8页。试卷主要包含了计算,设A,如图等内容,欢迎下载使用。