北京市昌平区名校2023-2024学年九上数学期末学业水平测试模拟试题含答案
展开
这是一份北京市昌平区名校2023-2024学年九上数学期末学业水平测试模拟试题含答案,共7页。试卷主要包含了下列事件中,是必然事件的是,校园内有一个由两个全等的六边形等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.如图,A、B、C三点在⊙O上,且∠AOB=80°,则∠ACB等于
A.100°B.80°C.50°D.40°
2.如图,线段AB是⊙O的直径,弦,,则等于( ).
A.B.C.D.
3.一元二次方程的根是( )
A.B.C.D.
4.如果点在双曲线上,那么m的值是( )
A.B.C.D.
5.已知反比例函数 y=的图象如图所示,则二次函数 y =ax 2-2x和一次函数 y=bx+a 在同一平面直角坐标系中的图象可能是( )
A.B.C.D.
6.把方程x(x+2)=5(x-2)化成一般式,则a、b、c的值分别是( )
A.1,-3,10B.1,7,-10C.1,-5,12D.1, 3,2
7.关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则实数m的取值范围是( )
A.m<3B.m>3C.m≤3D.m≥3
8.点点同学对数据25,43,28,2□,43,36,52进行统计分析,发现其中一个两位数的个位数被墨水涂污看不到了,则计算结果与涂污数字无关的是( )
A.平均数B.中位数C.方差D.众数
9.下列事件中,是必然事件的是( )
A.某射击运动员射击一次,命中靶心
B.抛一枚硬币,一定正面朝上
C.打开电视机,它正在播放新闻联播
D.三角形的内角和等于180°
10.校园内有一个由两个全等的六边形(边长为)围成的花坛,现将这个花坛在原有的基础上扩建成如图所示的一个菱形区域,并在新扩建的部分种上草坪,则扩建后菱形区域的周长为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.将边长分别为,,的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______.
12.关于的一元二次方程有实数根,则满足___________.
13.如图抛物线与轴交于,两点,与轴交于点,点是抛物线对称轴上任意一点,若点、、分别是、、的中点,连接,,则的最小值为_____.
14.已知二次函数的部分图象如图所示,则一元二次方程的解为:_____.
15.如图,一款落地灯的灯柱AB垂直于水平地面MN,高度为1.6米,支架部分的形为开口向下的抛物线,其顶点C距灯柱AB的水平距离为0.8米,距地面的高度为2.4 米,灯罩顶端D距灯柱AB的水平距离为1.4米,则灯罩顶端D距地面的高度为______米.
16.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是__________________________.
17.点是线段的黄金分割点,若,则较长线段的长是_____.
18.已知函数是反比例函数,则=________.
三、解答题(共66分)
19.(10分)国内猪肉价格不断上涨,已知今年10月的猪肉价格比今年年初上涨了80%,李奶奶10月在某超市购买1千克猪肉花了72元钱.
(1)今年年初猪肉的价格为每千克多少元?
(2)某超市将进货价为每千克55元的猪肉按10月价格出售,平均一天能销售出100千克,随着国家对猪肉价格的调控,超市发现猪肉的售价每千克下降1元,其日销售量就增加10千克,超市为了实现销售猪肉每天有1800元的利润,并且尽可能让顾客得到实惠,猪肉的售价应该下降多少元?
20.(6分)如图,点A的坐标为(0,﹣2),点B的坐标为(﹣3,2),点C的坐标为(﹣3,﹣1).
(1)请在直角坐标系中画出△ABC绕着点A顺时针旋转90°后的图形△AB′C′;
(2)直接写出:点B′的坐标 ,点C′的坐标 .
21.(6分)有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为18dm2和32dm2的正方形木板.
(1)求剩余木料的面积.
(2)如果木工想从剩余的木料中截出长为1.5dm,宽为ldm的长方形木条,最多能截出 块这样的木条.
22.(8分)元旦游园活动中,小文,小美,小红三位同学正在搬各自的椅子准备进行“抢凳子”游戏,看见李老师来了,小文立即邀请李老师参加,游戏规则如下:将三位同学的椅子背靠背放在教室中央,四人围着椅子绕圈行走,在行走过程中裁判员随机喊停,听到“停”后四人迅速抢坐在一张椅子上,没有抢坐到椅子的人淘汰,不能进入下一轮游戏.
(1)下列事件是必然事件的是 .
A.李老师被淘汰 B.小文抢坐到自己带来的椅子
C.小红抢坐到小亮带来的椅子 D.有两位同学可以进入下一轮游戏
(2)如果李老师没有抢坐到任何一张椅子,三位同学都抢坐到了椅子但都没有抢坐到自己带来的椅子(记为事件),求出事件的概率,请用树状图法或列表法加以说明.
23.(8分)如图,在四边形ABCD中,BD为一条对角线,AD∥BC,AD=2BC,∠ABD=90°,E为AD的中点,连接BE.
(1)求证:四边形BCDE为菱形;
(2)连接AC,若AC平分∠BAD,BC=1,求AC的长.
24.(8分)先化简,再求值:,其中x满足x2﹣4x+3=1.
25.(10分)某高级酒店为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费100以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折、五折区域顾客就可以获得此项待遇(转盘等分成16份).
(1)甲顾客消费80元,是否可获得转动转盘的机会?
(2)乙顾客消费150元,获得打折待遇的概率是多少?
(3)他获得九折,八折,七折,五折待遇的概率分别是多少?
26.(10分)如图,在中,,动点从点出发,沿以每秒个单位长度的速度向终点运动.过点作于点(点不与点重合),作,边交射线于点.设点的运动时间为秒.
(1)用含的代数式表示线段的长.
(2)当点与点重合时,求的值.
(3)设与重叠部分图形的面积为,求与之间的函数关系式.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、D
4、A
5、C
6、A
7、A
8、B
9、D
10、C
二、填空题(每小题3分,共24分)
11、
12、且
13、
14、
15、1.95
16、50(1﹣x)2=1.
17、
18、1
三、解答题(共66分)
19、(1)每千克40元(2)猪肉的售价应该下降5元
20、 (1)见解析;(2) (4,1),(1,1).
21、(1)剩余木料的面积为6dm1;(1)1.
22、(1)D;(2)图见解析,
23、(1)详见解析;(2)AC=.
24、化简结果是,求值结果是:.
25、(1)因为规定顾客消费100元以上才能获得一次转动转盘的机会,所以甲顾客消费80元,不能获得转动转盘的机会;(2)(3)P(九折); P(八折)= = P(七折)= P(五折) .
26、 (1);(2)t=1;(3).
相关试卷
这是一份西藏林芝地区名校2023-2024学年九上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,下列事件中,是必然事件的是等内容,欢迎下载使用。
这是一份北京市第35中学2023-2024学年九上数学期末学业水平测试模拟试题含答案,共7页。试卷主要包含了二次函数的图象的顶点坐标是,抛物线的顶点坐标是,已知点,一元二次方程x等内容,欢迎下载使用。
这是一份上海市静安区名校2023-2024学年九上数学期末学业水平测试模拟试题含答案,共7页。试卷主要包含了如图,把二次函数化成的形式是下列中的,二次函数y=ax2+bx+c,若点P等内容,欢迎下载使用。