2023-2024学年黑龙江省鹤岗市绥滨一中学九年级数学第一学期期末统考试题含答案
展开
这是一份2023-2024学年黑龙江省鹤岗市绥滨一中学九年级数学第一学期期末统考试题含答案,共8页。试卷主要包含了答题时请按要求用笔,已知关于x的方程,若与的相似比为1,方程的解是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.如图平行四边变形ABCD中,E是BC上一点,BE∶EC=2∶3,AE交BD于F,则S△BFE∶S△FDA等于( )
A.2∶5B.4∶9C.4∶25D.2∶3
2.下列一元二次方程中,有一个实数根为1的一元二次方程是( )
A.x2+2x-4=0B.x 2-4x+4=0
C.x 2+4x+10=0D.x 2+4x-5=0
3.如图是一棵小树一天内在太阳下不同时刻的照片,将它们按时间先后顺序进行排列正确的是( )
A.③—④—①—②B.②—①—④—③C.④—①—②—③D.④—①—③—②
4.如图,已知DE∥BC,CD和BE相交于点O,S△DOE:S△COB=4:9,则AE:EC为( )
A.2:1B.2:3C.4:9D.5:4
5.对于二次函数,下列说法正确的是( )
A.当x>0,y随x的增大而增大
B.当x=2时,y有最大值-3
C.图像的顶点坐标为(-2,-7)
D.图像与x轴有两个交点
6.已知关于x的方程(m+4)x2+2x﹣3m=0是一元二次方程,则m的取值范围是( )
A.m<﹣4B.m≠0C.m≠﹣4D.m>﹣4
7.《九章算术》中有一题“今有勾八步,股十五步,问勾中容圆径几何? ”其意思是:“今有直角三角形,勾(短直角边)长为步,股(长直角边)长为步,问该直角三角形能容纳的圆形(内切圆)直径是( )
A.步B.步C.步D.步
8.若与的相似比为1:4,则与的周长比为( )
A.1:2B.1:3C.1:4D.1:16
9.如图,两个反比例函数和在第一象限内的图象依次是C1和C2,设点P在C1上,轴于点C,交C2于点A,轴于点D,交C2于点B,则四边形PAOB的面积为( )
A.2B.3C.4D.5
10.方程的解是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.在某一时刻,测得一根高为的竹竿的影长为,同时同地测得一栋楼的影长为,则这栋楼的高度为________.
12.小天想要计算一组数据92,90,94,86,99,85的方差S02,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,﹣4,9,﹣5,记这组新数据的方差为S12,则S12__S02(填“>”,“=”或”<”)
13.若,则的值为__________.
14.平面直角坐标系内的三个点A(1,-3)、B(0,-3)、C(2,-3),___ 确定一个圆.(填“能”或“不能”)
15.如图,在平面直角坐标系中,将△ABO绕点A顺指针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去…,若点A(,0)、B(0,4),则点B2020的横坐标为_____.
16.某市为提倡居民节约用水,自今年1月1日起调整居民用水价格.图中、分别表示去年、今年水费(元)与用水量()之间的关系.小雨家去年用水量为150,若今年用水量与去年相同,水费将比去年多_____元.
17.Q是半径为3的⊙O上一点,点P与圆心O的距离OP=5,则PQ长的最小值是_____.
18.如图,D、E分别是△ABC的边AB,AC上的点,=,AE=2,EC=6,AB=12,则AD的长为_____.
三、解答题(共66分)
19.(10分)如图1,点A是x轴正半轴上的动点,点B的坐标为(0,4),M是线段AB的中点.将点M绕点A顺时针方向旋转900得到点C,过点C作x轴的垂线,垂足为F,过点B作y轴的垂线与直线CF相交于点E,点D是点A关于直线CF的对称点.连结AC,BC,CD,设点A的横坐标为t,
(1)当t=2时,求CF的长;
(2)①当t为何值时,点C落在线段CD上;
②设△BCE的面积为S,求S与t之间的函数关系式;
(3)如图2,当点C与点E重合时,将△CDF沿x轴左右平移得到,再将A,B,为顶点的四边形沿剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出符合上述条件的点坐标,
20.(6分)如图,在中,于,,,,分别是,的中点.
(1)求证:,;
(2)连接,若,求的长.
21.(6分)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.
(1)写出正比例函数和反比例函数的关系式;
(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;
(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.
22.(8分)如图,要在长、宽分别为40米、24米的矩形赏鱼池内建一个正方形的亲水平台.为了方便行人观赏,分别从东、南、西、北四个方向修四条等宽的小路与平台相连,若小路的宽是正方形平台边长的,小路与亲水平台的面积之和占矩形赏鱼池面积的,求小路的宽.
23.(8分)某校七年级一班和二班各派出10名学生参加一分钟跳绳比赛,成绩如下表:
(1)两个班级跳绳比赛成绩的众数、中位数、平均数、方差如下表:
表中数据a= ,b= ,c= .
(2)请用所学的统计知识,从两个角度比较两个班跳绳比赛的成绩.
24.(8分)在平面直角坐标系中,直线与反比例函数的图象的两个交点分别为点(,)和点.
(1)求的值和点的坐标;
(2)如果点为轴上的一点,且∠直接写出点A的坐标.
25.(10分)如图,在中,,,.点从点出发,沿向终点运动,同时点从点出发,沿射线运动,它们的速度均为每秒5个单位长度,点到达终点时,、同时停止运动,当点不与点、重合时,过点作于点,连接,以、为邻边作.设与重叠部分图形的面积为,点的运动时间为.
(1)①的长为______;
②的长用含的代数式表示为______;
(2)当为矩形时,求的值;
(3)当与重叠部分图形为四边形时,求与之间的函数关系式.
26.(10分)如图,在中,,点为边的中点,请按下列要求作图,并解决问题:
(1)作点关于的对称点;
(2)在(1)的条件下,将绕点顺时针旋转,
①面出旋转后的(其中、、三点旋转后的对应点分别是点、、);
②若,则________.(用含的式子表示)
参考答案
一、选择题(每小题3分,共30分)
1、C
2、D
3、B
4、A
5、B
6、C
7、A
8、C
9、B
10、B
二、填空题(每小题3分,共24分)
11、1
12、=
13、
14、不能
15、1
16、1.
17、1
18、1
三、解答题(共66分)
19、(2)CF=2;(2)①;②;(3)点的坐标为:(22,2),(8,2),(2,2).
20、(1)证明见解析;(2)EF=5.
21、(1)y=x,;(2)存在,Q1(2,1)和Q2(﹣2,﹣1);(3)2+1
22、小路宽为2米
23、解:(1)a=135,b=134.5,c=1.6;(2)①从众数(或中位数)来看,一班成绩比二班要高,所以一班的成绩好于二班;②一班和二班的平均成绩相同,说明他们的水平相当;③一班成绩的方差小于二班,说明一班成绩比二班稳定.
24、(1)k=1,Q(-1,-1).(2)
25、(1)①3;②3t;(2);(3)当0<t≤时,S=-3t2+48t;当<t<3,S=t2−14t+1.
26、(1)见解析;(2)①见解析,②90°−α
相关试卷
这是一份2023-2024学年黑龙江省鹤岗市绥滨县九上数学期末经典模拟试题含答案,共9页。试卷主要包含了下列事件中,是随机事件的是等内容,欢迎下载使用。
这是一份2023-2024学年鹤岗市重点中学数学九年级第一学期期末统考模拟试题含答案,共8页。试卷主要包含了二次函数y=ax2+bx+c等内容,欢迎下载使用。
这是一份2023-2024学年黑龙江省鹤岗市绥滨一中学数学八年级第一学期期末经典模拟试题含答案,共7页。试卷主要包含了4的算术平方根是等内容,欢迎下载使用。