2023-2024学年安徽省砀山县联考九上数学期末学业水平测试模拟试题含答案
展开
这是一份2023-2024学年安徽省砀山县联考九上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,在平面直角坐标系中,点等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)
1.如图,正方形的四个顶点在半径为 的大圆圆周上,四条边都与小圆都相切,过圆心,且,则图中阴影部分的面积是( )
A.B.C.D.
2.圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是( )
A.相离B.相切C.相交D.相交或相切
3.如图,公园中一正方形水池中有一喷泉,喷出的水流呈抛物线状,测得喷出口高出水面0.8m,水流在离喷出口的水平距离1.25m处达到最高,密集的水滴在水面上形成了一个半径为3m的圆,考虑到出水口过高影响美观,水滴落水形成的圆半径过大容易造成水滴外溅到池外,现决定通过降低出水口的高度,使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面( )
A.0.55米B.米C.米D.0.4米
4.如图,在平行四边形中,为延长线上一点,且,连接 交于,则△与△的周长之比为( )
A.9:4B.4:9
C.3:2D.2:3
5.圆内接正三角形、正方形、正六边形的边长之比为( )
A.1:2:3B.1::C.::1D.无法确定
6.如图,在中,,,,以点为圆心,的长为半径作弧,交于点,则阴影部分的面积是( )
A.B.C.D.
7.若△ABC∽△ADE,若AB=9,AC=6,AD=3,则EC的长是( )
A.2B.3C.4D.5
8.在平面直角坐标系中,点(-2,6)关于原点对称的点的坐标是( )
A.(2,-6)B.(-2,6)C.(-6,2)D.(-6,2)
9.如图,在Rt△ABC中,∠BAC=90°.将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为( )
A.42°B.48°
C.52°D.58°
10.已知(x2+y2)(x2+y2-1)-6=0,则 x2+y2 的值是( )
A.3或-2B.-3或2C.3D.-2
二、填空题(每小题3分,共24分)
11.已知,且 ,且与的周长和为175 ,则的周长为 _________.
12.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为120°,AB的长为20cm,扇面BD的长为15cm,则弧DE的长是_____.
13.已知扇形的弧长为4π,圆心角为120°,则它的半径为_____.
14.点P(4,﹣6)关于原点对称的点的坐标是_____.
15.已知圆的半径为,点在圆外,则长度的取值范围为___________.
16.如图,已知等边的边长为4,,且.连结,并延长交于点,则线段的长度为__________.
17.已知二次函数y=x2﹣5x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为_____.
18.如图,已知点D,E是半圆O上的三等分点,C是弧DE上的一个动点,连结AC和BC,点I是△ABC的内心,若⊙O的半径为3,当点C从点D运动到点E时,点I随之运动形成的路径长是_____.
三、解答题(共66分)
19.(10分)如图,已知反比例函数y1=与一次函数y2=k2x+b的图象交于点A(2,4),B(﹣4,m)两点.
(1)求k1,k2,b的值;
(2)求△AOB的面积;
(3)请直接写出不等式≥k2x+b的解.
20.(6分)某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-1.其图象如图所示.
⑴a= ;b= ;
⑵销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?
⑶由图象可知,销售单价x在 时,该种商品每天的销售利润不低于16元?
21.(6分)某区规定学生每天户外体育活动时间不少于1小时,为了解学生参加户外体育活动的情况,对部分学生每天参加户外体育活动的时间进行了随机抽样调查,并将调查结果绘制成如图的统计图表(不完整).请根据图表中的信息,解答下列问题:
(1)表中的a=_____,将频数分布直方图补全;
(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有多少名?
(3)若从参加户外体育活动时间最长的3名男生和1名女生中随机抽取两名,请用画树状图或列表法求恰好抽到1名男生和1名女生的概率.
22.(8分)我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.如图,在△ABC中,AB>AC,点D,E分别在AB,AC上,设CD,BE相交于点O,如果∠A是锐角,∠DCB=∠EBC=∠A.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.
23.(8分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高 米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)
24.(8分)某商场试销一种成本为每件元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,;时,.
求一次函数的表达式;
若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
25.(10分)解方程:
(1)2x2-4x-31=1;
(2)x2-2x-4=1.
26.(10分)如图,在△ABC中,点D在边AB上,DE∥BC,DF∥AC,DE、DF分别交边AC、BC于点E、F,且.
(1)求的值;
(2)联结EF,设=,=,用含、的式子表示.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、D
3、B
4、C
5、C
6、A
7、C
8、A
9、A
10、C
二、填空题(每小题3分,共24分)
11、1
12、cm
13、6
14、 (﹣4,6)
15、
16、1
17、(4,0).
18、π.
三、解答题(共66分)
19、(1)k1=8,k1=1,b=1;(1)2;(3)x≤﹣4或0<x≤1.
20、(1)-1,20;(2)当x=10时,该商品的销售利润最大,最大利润是25元;(3)7≤x≤13
21、(1)120,补图见解析;(2)该区8000名学生中,每天户外体育活动的时间不足1小时的学生大约有2800名;(3).
22、存在等对边四边形,是四边形DBCE,见解析
23、2.1.
24、(1);(2)销售单价定为元时,商场可获得最大利润,最大利润是元.
25、(1)x1=-3,x2=5;(2)x1=,x2=
26、 (1)见解析;(2)=﹣.
组别
时间(小时)
频数(人数)
频率
A
0≤t<0.5
20
0.05
B
0.5≤t<1
a
0.3
C
l≤t<1.5
140
0.35
D
1.5≤t<2
80
0.2
E
2≤t<2.5
40
0.1
相关试卷
这是一份山西省平定县联考2023-2024学年九上数学期末学业水平测试模拟试题含答案,共8页。试卷主要包含了一组数据等内容,欢迎下载使用。
这是一份安徽省沿淮教育联盟2023-2024学年九上数学期末学业水平测试模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,在平面直角坐标系中,已知点A,下列事件中,是必然事件的是等内容,欢迎下载使用。
这是一份陕西省岐山县联考2023-2024学年九上数学期末学业水平测试模拟试题含答案,共9页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。