2023-2024学年福建省福州市仓山区九上数学期末检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是( )
A.2500x=3500
B.2500(1+x)=3500
C.2500(1+x%)=3500
D.2500(1+x)+2500(1+x)=3500
2.下列事件中是随机事件的个数是( )
①投掷一枚硬币,正面朝上;
②五边形的内角和是540°;
③20件产品中有5件次品,从中任意抽取6件,至少有一件是次品;
④一个图形平移后与原来的图形不全等.
A.0B.1C.2D.3
3.若双曲线经过第二、四象限,则直线经过的象限是( )
A.第一、二、三象限B.第一、二、四象限
C.第一、三、四象限D.第二、三、四象限
4.下列方程中,是一元二次方程的是( )
A.2x+y=1B.x2+3xy=6C.x+=4D.x2=3x﹣2
5.如图,点O为△ABC的外心,点I为△ABC的内心,若∠BOC=140°,则∠BIC的度数为( )
A.110°B.125°C.130°D.140°
6.下列是世界各国银行的图标,其中不是轴对称图形的是( )
A.B.C.D.
7.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为
A.12B.9C.6D.4
8.已知抛物线y=ax2+bx+c(b>a>0)与x轴最多有一个交点,现有以下四个结论:
①该抛物线的对称轴在y轴左侧;
②关于x的方程ax2+bx+c+2=0无实数根;
③a﹣b+c≥0;
④的最小值为1.
其中,正确结论的个数为( )
A.1个B.2个C.1个D.4个
9.在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )
A.B.C.D.
10.如图,正六边形ABCDEF内接于,M为EF的中点,连接DM,若的半径为2,则MD的长度为
A.B.C.2D.1
二、填空题(每小题3分,共24分)
11.用反证法证明命题“若⊙O的半径为r,点P到圆心的距离为d,且d>r,则点P在⊙O的外部”,首先应假设P在__________.
12.已知,则_____.
13.如图,、、所在的圆的半径分别为r1、r2、r3,则r1、r2、r3的大小关系是____.(用“<”连接)
14.b和2的比例中项是4,则b=__.
15.若正六边形的边长为2,则此正六边形的边心距为______.
16.已知抛物线y=(1﹣3m)x2﹣2x﹣1的开口向上,设关于x的一元二次方程(1﹣3m)x2﹣2x﹣1=0的两根分别为x1、x2,若﹣1<x1<0,x2>2,则m的取值范围为_____.
17.设x1、x2是方程x﹣x﹣1=0的两个实数根,则x1+x2=_________.
18.关于的一元二次方程有一个解是,另一个根为 _______.
三、解答题(共66分)
19.(10分)问题发现:
(1)如图1,内接于半径为4的,若,则_______;
问题探究:
(2)如图2,四边形内接于半径为6的,若,求四边形的面积最大值;
解决问题
(3)如图3,一块空地由三条直路(线段、AB、)和一条弧形道路围成,点是道路上的一个地铁站口,已知千米,千米,,的半径为1千米,市政府准备将这块空地规划为一个公园,主入口在点处,另外三个入口分别在点、、处,其中点在上,并在公园中修四条慢跑道,即图中的线段、、、,是否存在一种规划方案,使得四条慢跑道总长度(即四边形的周长)最大?若存在,求其最大值;若不存在,说明理由.
20.(6分)如图1,AB为⊙O的直径,点C为⊙O上一点,CD平分∠ACB交⊙O于点D,交AB于点E.
(1)求证:△ABD为等腰直角三角形;
(2)如图2,ED绕点D顺时针旋转90°,得到DE′,连接BE′,证明:BE′为⊙O的切线;
(3)如图3,点F为弧BD的中点,连接AF,交BD于点G,若DF=1,求AG的长.
21.(6分)已知二次函数y=2x2+4x+3,当﹣2≤x≤﹣1时,求函数y的最小值和最大值,如图是小明同学的解答过程.你认为他做得正确吗?如果正确,请说明解答依据,如果不正确,请写出你得解答过程.
22.(8分)如图,AB为⊙O的直径,射线AP交⊙O于C点,∠PCO的平分线交⊙O于D点,过点D作交AP于E点.
(1)求证:DE为⊙O的切线;
(2)若DE=3,AC=8,求直径AB的长.
23.(8分)如图,在平行四边形ABCD中,AE⊥BC于点E.若一个三角形模板与△ABE完全重合地叠放在一起,现将该模板绕 点E顺时针旋转.要使该模板旋转60°后,三个顶点仍在平行四边形ABCD的边上,请探究平行四边形ABCD的角和边需要满足的条件.
24.(8分)如图1,AB是⊙O的直径,过⊙O上一点C作直线l,AD⊥l于点D.
(1)连接AC、BC,若∠DAC=∠BAC,求证:直线l是⊙O的切线;
(1)将图1的直线l向上平移,使得直线l与⊙O交于C、E两点,连接AC、AE、BE, 得到图1. 若∠DAC=45°,AD=1cm,CE=4cm,求图1中阴影部分(弓形)的面积.
25.(10分)如图,在中,于点.若,求的值.
26.(10分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.
(1)开通隧道前,汽车从A地到B地大约要走多少千米?
(2)开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、C
4、D
5、B
6、D
7、B
8、D
9、C
10、A
二、填空题(每小题3分,共24分)
11、⊙O上或⊙O内
12、
13、r3 <r2 <r1
14、1.
15、.
16、﹣<m<
17、1
18、
三、解答题(共66分)
19、(1);(2)四边形ABCD的面积最大值是;(3)存在,其最大值为.
20、(1)见解析;(1)见解析;(3)1.
21、错误,见解析
22、(1)证明见解析;(3)1.
23、详见解析.
24、(1)详见解析;(1)
25、
26、(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B地比原来少走的路程为27.2千米
福建福州市仓山区第十二中学2023-2024学年数学九上期末经典模拟试题含答案: 这是一份福建福州市仓山区第十二中学2023-2024学年数学九上期末经典模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知,则代数式的值为,已知二次函数,则下列说法,如图,,,以下结论成立的是等内容,欢迎下载使用。
2023-2024学年福建省福州市金山中学九上数学期末达标检测模拟试题含答案: 这是一份2023-2024学年福建省福州市金山中学九上数学期末达标检测模拟试题含答案,共8页。
福建省福州市华伦中学2023-2024学年九上数学期末达标检测模拟试题含答案: 这是一份福建省福州市华伦中学2023-2024学年九上数学期末达标检测模拟试题含答案,共8页。