2023-2024学年湖南长沙北雅中学数学九年级第一学期期末质量跟踪监视模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.如图,在正方形中,是的中点,是上一点,,则下列结论正确的有( )
① ② ③ ④∽
A.1个B.2个C.3个D.4个
2.如图,一条公路环绕山脚的部分是一段圆弧形状(O为圆心),过A,B两点的切线交于点C,测得∠C=120°,A,B两点之间的距离为60m,则这段公路AB的长度是( )
A.10πmB.20πmC.10πmD.60m
3.如图,是的直径,是的弦,已知,则的度数为( )
A.B.C.D.
4.下列根式是最简二次根式的是
A.B.C.D.
5.如图,边长为1的正方形ABCD绕点A逆时针旋转30°到正方形AB’C’D’,图中阴影部分的面积为( ).
A.B.C.D.
6.如图,在中,D、E分别在AB边和AC边上,,M为BC边上一点(不与B、C重合),连结AM交DE于点N,则( )
A.B.C.D.
7.将二次函数y=2x2﹣4x+5的右边进行配方,正确的结果是( )
A.y=2(x﹣1)2﹣3B.y=2(x﹣2)2﹣3
C.y=2(x﹣1)2+3D.y=2(x﹣2)2+3
8.如图,AB为的直径,点C在上,若AB=4,,则O到AC的距离为( )
A.1B.2C.D.
9.已知二次函数y=x2+mx+n的图像经过点(―1,―3),则代数式mn+1有( )
A.最小值―3 B.最小值3 C.最大值―3 D.最大值3
10.已知函数的部分图像如图所示,若,则的取值范围是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.如图,在菱形ABCD中,边长为1,∠A=60˚,顺次连接菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去,…,则四边形A2019B2019C2019D2019的面积是_____.
12.如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为___________
13.在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD'P,PD'的延长线交边AB于点M,过点B作BN∥MP交DC于点N,连接AC,分别交PM,PB于点E,F.现有以下结论:
①连接DD',则AP垂直平分DD';
②四边形PMBN是菱形;
③AD2=DP•PC;
④若AD=2DP,则;
其中正确的结论是_____(填写所有正确结论的序号)
14.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.
15.如图,在▱ABCD中,AD=7,AB=2,∠B=60°.E是边BC上任意一点,沿AE剪开,将△ABE沿BC方向平移到△DCF的位置,得到四边形AEFD,则四边形AEFD周长的最小值为_____.
16.如果点A(2,﹣4)与点B(6,﹣4)在抛物线y=ax2+bx+c(a≠0)上,那么该抛物线的对称轴为直线_____.
17.如图,反比例函数的图象经过点,过作轴垂线,垂足是是轴上任意一点,则的面积是_________.
18.如图,直线AB与CD相交于点O,OA=4cm,∠AOC=30°,且点A也在半径为1cm的⊙P上,点P在直线AB上,⊙P以1cm/s的速度从点A出发向点B的方向运动_________s时与直线CD相切.
三、解答题(共66分)
19.(10分)在正方形和等腰直角中,,是的中点,连接、.
(1)如图1,当点在边上时,延长交于点.求证:;
(2)如图2,当点在的延长线上时,(1)中的结论是否成立?请证明你的结论;
(3)如图3,若四边形为菱形,且,为等边三角形,点在的延长线上时,线段、又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.
20.(6分)如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F,E,且.
(1)求证:△ADC∽△EBA;
(2)如果AB=8,CD=5,求tan∠CAD的值.
21.(6分)小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).
(1)求y与x的函数关系式.
(2)要使日销售利润为720元,销售单价应定为多少元?
(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.
22.(8分)如图,抛物线y=x2+bx+c与直线y=x+3交于A,B两点,交x轴于C、D两点,连接AC、BC,已知A(0,3),C(﹣3,0).
(1)求抛物线的解析式;
(2)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,并求出这个最大值;
(3)点P为y轴右侧抛物线上一动点,连接PA,过点P作PQ⊥PA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与△ABC相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由.
23.(8分)如图,AB是⊙O的直径,弦CD⊥AB于点E,G是上一动点,AG,DC的延长线交于点F,连接AC,AD,GC,GD.
(1)求证:∠FGC=∠AGD;
(2)若AD=1.
①当AC⊥DG,CG=2时,求sin∠ADG;
②当四边形ADCG面积最大时,求CF的长.
24.(8分)计算:2cs30°﹣2sin45°+3tan60°+|1﹣|.
25.(10分)某软件开发公司开发了A、B两种软件,每种软件成本均为1400元,售价分别为2000元、1800元,这两种软件每天的销售额共为112000元,总利润为28000元.
(1)该店每天销售这两种软件共多少个?
(2)根据市场行情,公司拟对A种软件降价销售,同时提高B种软件价格.此时发现,A种软件每降50元可多卖1件,B种软件每提高50元就少卖1件.如果这两种软件每天销售总件数不变,那么这两种软件一天的总利润最多是多少?
26.(10分)如图,在△ABC中,AB=AC=10,∠B=30°,O是线段AB上的一个动点,以O为圆心,OB为半径作⊙O交BC于点D,过点D作直线AC的垂线,垂足为E.
(1)求证:DE是⊙O的切线;
(2)设OB=x,求∠ODE的内部与△ABC重合部分的面积y的最大值.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、B
3、C
4、D
5、C
6、C
7、C
8、C
9、A
10、C
二、填空题(每小题3分,共24分)
11、
12、1.
13、①②③
14、a≤且a≠1.
15、20
16、x=4
17、
18、1或5
三、解答题(共66分)
19、(1)证明见解析;(2)成立,证明见解析;(3),图详见解析.
20、(1)详见解析;(2).
21、(1);(2)10元;(3)x为12时,日销售利润最大,最大利润960元
22、(1)抛物线的解析式是y=x2+x+3;(2)|MB﹣MD|取最大值为;(3)存在点P(1,6).
23、(1)证明见解析;(2)①sin∠ADG=;②CF=1.
24、
25、(1)60;(2)1
26、 (1)证明见解析;(2)
2023-2024学年湖南省长沙市南雅中学九年级数学第一学期期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年湖南省长沙市南雅中学九年级数学第一学期期末质量跟踪监视模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
湖南省长沙市雅礼实验中学2023-2024学年八年级数学第一学期期末质量跟踪监视模拟试题含答案: 这是一份湖南省长沙市雅礼实验中学2023-2024学年八年级数学第一学期期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了答题时请按要求用笔,有下列实数等内容,欢迎下载使用。
2023-2024学年湖南长沙市南雅中学八上数学期末质量跟踪监视模拟试题含答案: 这是一份2023-2024学年湖南长沙市南雅中学八上数学期末质量跟踪监视模拟试题含答案,共8页。试卷主要包含了若的结果中不含项,则的值为等内容,欢迎下载使用。