2023-2024学年湖州市重点中学数学九年级第一学期期末调研模拟试题含答案
展开
这是一份2023-2024学年湖州市重点中学数学九年级第一学期期末调研模拟试题含答案,共9页。
学校_______ 年级_______ 姓名_______
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题3分,共30分)
1.如图,l1∥l2∥l3,直线a,b与l1,l2,l3分别相交于点A、B、C和点D、E、F,若,DE=4,则DF的长是( )
A.B.C.10D.6
2.在正方形网格中,如图放置,则( )
A.B.C.D.
3.下列事件是必然事件的是( )
A.打开电视机,正在播放篮球比赛B.守株待兔
C.明天是晴天D.在只装有5个红球的袋中摸出1球,是红球.
4.已知关于的一元二次方程有两个不相等的实数根,则的取值范围为( )
A.B.C.D.
5.如图所示,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴的一个交点坐标为(0,3),其部分图象如图所示,下列结论:①abc<0;②4a+c>0;③方程ax2+bx+c=3的两个根是x1=0,x2=2;④方程ax2+bx+c=0有一个实根大于2;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )
A.4个B.3个C.2个D.1个
6.如图,已知AB、AC都是⊙O的弦,OM⊥AB,ON⊥AC,垂足分别为M,N,若MN=,那么BC等于( )
A.5B.C.2D.
7.如图是二次函数y=ax1+bx+c(a≠0)图象的一部分,对称轴是直线x=﹣1.关于下列结论:①ab0;③9a﹣3b+c>0;④b﹣4a=0;⑤ 方程ax1+bx=0的两个根为 x1=0,x1=﹣4,其中正确的结论有( )
A.②③B.②③④C.②③⑤D.②③④⑤
8.如图相交于点,下列比例式错误的是( )
A.B.C.D.
9.抛掷一枚均匀的骰子,所得的点数能被3整除的概率为( )
A.B.C.D.
10.如图,两个反比例函数和在第一象限内的图象依次是C1和C2,设点P在C1上,轴于点C,交C2于点A,轴于点D,交C2于点B,则四边形PAOB的面积为( )
A.2B.3C.4D.5
二、填空题(每小题3分,共24分)
11.抛物线y=9x2﹣px+4与x轴只有一个公共点,则p的值是_____.
12.如图是拦水坝的横断面,斜坡的高度为米,斜面的坡比为,则斜坡的长为________米.(保留根号)
13.如图,在矩形中,点为的中点,交于点,连接,下列结论:
①;
②;
③;
④若,则.
其中正确的结论是______________.(填写所有正确结论的序号)
14.将矩形纸片ABCD按如下步骤进行操作:
(1)如图1,先将纸片对折,使BC和AD重合,得到折痕EF;
(2)如图2,再将纸片分别沿EC,BD所在直线翻折,折痕EC和BD相交于点O.那么点O到边AB的距离与点O到边CD的距离的比值是_____.
15.一个几何体是由一些大小相同的小正方块摆成的,其俯视图与主视图如图所示,则组成这个几何体的小正方块最多有________.
16.(2016辽宁省沈阳市)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是______.
17.如图,E是▱ABCD的BC边的中点,BD与AE相交于F,则△ABF与四边形ECDF的面积之比等于_____.
18.已知和时,多项式的值相等,则m的值等于 ______ .
三、解答题(共66分)
19.(10分)已知反比例函数和一次函数.
(1)当两个函数图象的交点的横坐标是-2和3时,求一次函数的表达式;
(2)当时,两个函数的图象只有一个交点,求的值.
20.(6分)在矩形ABCD中,AB=3,AD=5,E是射线DC上的点,连接AE,将△ADE沿直线AE翻折得△AFE.
(1)如图①,点F恰好在BC上,求证:△ABF∽△FCE;
(2)如图②,点F在矩形ABCD内,连接CF,若DE=1,求△EFC的面积;
(3)若以点E、F、C为顶点的三角形是直角三角形,则DE的长为 .
21.(6分)在平面直角坐标系中,已知抛物线.
(1)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“方点”.试求拋物线的“方点”的坐标;
(2)如图,若将该抛物线向左平移1个单位长度,新抛物线与轴相交于、两点(在左侧),与轴相交于点,连接.若点是直线上方抛物线上的一点,求的面积的最大值;
(3)第(2)问中平移后的抛物线上是否存在点,使是以为直角边的直角三角形?若存在,直接写出所有符合条件的点的坐标;若不存在,说明理由.
22.(8分)用配方法解下列方程.
(1) ;
(2) .
23.(8分)对于平面直角坐标系中的图形M,N,给出如下定义:如果点P为图形M上任意一点,点Q为图形N上任意一点,那么称线段PQ长度的最小值为图形M,N的“近距离”,记作 d(M,N).若图形M,N的“近距离”小于或等于1,则称图形M,N互为“可及图形”.
(1)当⊙O的半径为2时,
①如果点A(0,1),B(3,4),那么d(A,⊙O)=_______,d(B,⊙O)= ________;
②如果直线与⊙O互为“可及图形”,求b的取值范围;
(2)⊙G的圆心G在轴上,半径为1,直线与x轴交于点C,与y轴交于点D,如果⊙G和∠CDO互为“可及图形”,直接写出圆心G的横坐标m的取值范围.
24.(8分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2).
⑴在平面直角坐标系中画出△ABC关于原点对称的△A1B1C1;
⑵把△ABC绕点A顺时针旋转一定的角度,得图中的△AB2C2,点C2在AB上.请写出:
①旋转角为 度;
②点B2的坐标为 .
25.(10分)已知抛物线y=2x2-12x+13
(1)当x为何值时,y有最小值,最小值是多少?
(2)当x为何值时,y随x的增大而减小
(3)将该抛物线向右平移2个单位,再向上平移2个单位,请直接写出新抛物线的表达式
26.(10分)五一期间,小红和爸爸妈妈去开元寺参观,对东西塔这对中国现存最高也是最大的石塔赞叹不已,也对石塔的高度产生了浓厚的兴趣.小红进行了以下的测量:她到与西塔距离27米的一栋大楼处,在楼底A处测得塔顶B的仰角为60°,再到楼顶C处测得塔顶B的仰角为30°.那么你能帮小红计算西塔BD和大楼AC的高度吗?
参考答案
一、选择题(每小题3分,共30分)
1、C
2、B
3、D
4、A
5、A
6、C
7、D
8、D
9、B
10、B
二、填空题(每小题3分,共24分)
11、±1
12、
13、①③④
14、
15、6
16、或.
17、
18、或1
三、解答题(共66分)
19、(1);(2)
20、(1)证明见解析;(2);(3)、5、15、
21、(1)抛物线的方点坐标是,;(2)当时,的面积最大,最大值为;(3)存在,或
22、 (1); (2).
23、(1)① 1,3;②;(2),.
24、⑴详见解析;⑵ ①90 ;②(6,2)
25、(1)当x=3时,y有最小值,最小值是-5;(2)当x<3时,y随x的增大而减小;(3)y=2x2-20x+47.
26、西塔BD的高度为27米,大楼AC的高度为米.
相关试卷
这是一份2023-2024学年衡阳市重点中学数学九年级第一学期期末调研试题含答案,共9页。
这是一份2023-2024学年海北市重点中学数学九年级第一学期期末调研模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份2023-2024学年沈阳市重点中学数学九年级第一学期期末调研模拟试题含答案,共9页。