2023-2024学年丽水市重点中学数学九年级第一学期期末调研试题含答案
展开
这是一份2023-2024学年丽水市重点中学数学九年级第一学期期末调研试题含答案,共9页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,菱形具有而矩形不具有的性质是等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图,在中,,,点是边上的一个动点,以为直径的圆交于点,若线段长度的最小值是4,则的面积为( )
A.32B.36C.40D.48
2.正六边形的半径为4,则该正六边形的边心距是( )
A.4B.2C.2D.
3.如图,四边形ABCD内接于⊙O,若∠BOD=160°,则∠BAD的度数是( )
A.60°B.80°C.100°D.120°
4.下列运算正确的是( )
A.5m+2m=7m2
B.﹣2m2•m3=2m5
C.(﹣a2b)3=﹣a6b3
D.(b+2a)(2a﹣b)=b2﹣4a2
5.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于( )
A.35°B.50°C.125°D.90°
6.一次会议上,每两个参加会议的人都握了一次手,有人统(总)计一共握了次手,这次参加会议到会的人数是人,可列方程为:( )
A.B.C.D.
7.如图,是岑溪市几个地方的大致位置的示意图,如果用表示孔庙的位置,用表示东山公园的位置,那么体育场的位置可表示为( )
A.B.C.D.
8.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )
A.方差B.众数C.平均数D.中位数
9.菱形具有而矩形不具有的性质是( )
A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直
10. “线段,等边三角形,圆,矩形,正六边形”这五个图形中,既是轴对称图形又是中心对称图形的个数有( )
A.5 个 B.4 个 C.3 个 D.2 个
二、填空题(每小题3分,共24分)
11.如图,AB为⊙O的直径,C、D为⊙O上的点,弧AD=弧CD.若∠CAB=40°,则∠CAD=_____.
12.如图,已知一次函数y=kx﹣3(k≠0)的图象与x轴,y轴分别交于A,B两点,与反比例函数y=(x>0)交于C点,且AB=AC,则k的值为_____.
13.在△ABC中,∠ABC = 30°,AB = ,AC =1,则∠ACB 的度数为____________.
14.如图,四边形ABCD内接于⊙O,连结AC,若∠BAC=35°,∠ACB=40°,则∠ADC=_____°.
15.如果反比例函数的图象经过点,则该反比例函数的解析式为____________
16.如图,已知点是函数图象上的一个动点.若,则的取值范围是__________.
17.小明向如图所示的区域内投掷飞镖,阴影部分时的内切圆,已知,,,如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为____________.
18.在△ABC中,AB=AC=5,BC=8,若∠BPC=∠BAC,tan∠BPC=_______________.
三、解答题(共66分)
19.(10分)某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:
(1)请将右上表补充完整:(参考公式:方差)
(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,__________的成绩好些;②从平均数和中位数相结合看,___________的成绩好些;
(3)若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.
20.(6分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶,分别写着:有害垃圾、厨余垃圾、其他垃圾、可回收垃圾.其中小明投放了一袋垃圾,小丽投放了两袋垃圾.
(1)直接写出小明投放的垃圾恰好是“厨余垃圾”的概率;
(2)求小丽投放的两袋垃圾不同类的概率.
21.(6分)国家创新指数是反映一个国家科学技术和创新竞争力的综合指数.对国家创新指数得分排名前40的国家的有关数据进行收集、整理、描述和分析.下面给出了部分信息:
a.国家创新指数得分的频数分布直方图(数据分成7组:
30≤x<40,40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);
b.国家创新指数得分在60≤x<70这一组的是:61.7 62.4 63.6 65.9 66.4 68.5 69.1 69.3 69.5
c.40个国家的人均国内生产总值和国家创新指数得分情况统计图:
d.中国的国家创新指数得分为69.5.
(以上数据来源于《国家创新指数报告(2018)》)
根据以上信息,回答下列问题:
(1)中国的国家创新指数得分排名世界第______;
(2)在40个国家的人均国内生产总值和国家创新指数得分情况统计图中,包括中国在内的少数几个国家所对应的点位于虚线的上方.请在图中用“”圈出代表中国的点;
(3)在国家创新指数得分比中国高的国家中,人均国内生产总值的最小值约为______万美元;(结果保留一位小数)
(4)下列推断合理的是______.
①相比于点A,B所代表的国家,中国的国家创新指数得分还有一定差距,中国提出“加快建设创新型国家”的战略任务,进一步提高国家综合创新能力;
②相比于点B,C所代表的国家,中国的人均国内生产总值还有一定差距,中国提出“决胜全面建成小康社会”的奋斗目标,进一步提高人均国内生产总值.
22.(8分)已知:如图,平行四边形,是的角平分线,交于点,且,;求的度数.
23.(8分)综合与探究:
已知二次函数y=﹣x2+x+2的图象与x轴交于A,B两点(点B在点A的左侧),与y轴交于点C.
(1)求点A,B,C的坐标;
(2)求证:△ABC为直角三角形;
(3)如图,动点E,F同时从点A出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点F停止运动时,点E随之停止运动.设运动时间为t秒,连结EF,将△AEF沿EF翻折,使点A落在点D处,得到△DEF.当点F在AC上时,是否存在某一时刻t,使得△DCO≌△BCO?(点D不与点B重合)若存在,求出t的值;若不存在,请说明理由.
24.(8分)已知△ABC,AB=AC,BD是∠ABC的角平分线,EF是BD的中垂线,且分别交BC于点E,交AB于点F,交BD于点K,连接DE,DF.
(1)证明:DE//AB;
(2)若CD=3,求四边形BEDF的周长.
25.(10分)如图,是的角平分线,延长至点使得.求证:.
26.(10分)试证明:不论为何值,关于的方程总为一元二次方程.
参考答案
一、选择题(每小题3分,共30分)
1、D
2、C
3、B
4、C
5、C
6、B
7、A
8、D
9、D
10、B
二、填空题(每小题3分,共24分)
11、25°
12、k=
13、60°或120°.
14、1
15、
16、
17、
18、
三、解答题(共66分)
19、(1)①1.2;②7;③7.5;(2)①甲;②乙;(3)乙,理由见解析
20、(1);(2).
21、(1)17;(2)如图所示,见解析;(3)2.8;(4)①②.
22、50°
23、(1)点A的坐标为(4,0),点B的坐标为(﹣1,0),点C的坐标为(0,1);(1)证明见解析;(3)t=.
24、(1)见详解;(2)12
25、证明见解析.
26、证明见解析.
平均数
方差
中位数
甲
7
① .
7
乙
② .
5.4
③ .
相关试卷
这是一份2023-2024学年衡阳市重点中学数学九年级第一学期期末调研试题含答案,共9页。
这是一份2023-2024学年海北市重点中学数学九年级第一学期期末调研模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
这是一份2023-2024学年沈阳市重点中学数学九年级第一学期期末调研模拟试题含答案,共9页。