2023-2024学年广西贺州昭平县联考九上数学期末联考模拟试题含答案
展开这是一份2023-2024学年广西贺州昭平县联考九上数学期末联考模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,已知方程的两根为,则的值为,如图,AB是⊙O的弦,如果,那么的值为,的值为等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.现有四张分别标有数字﹣2,﹣1,1,3的卡片,它们除数字外完全相同,把卡片背面朝上洗匀,从中随机抽取一张卡片,记下数字后放回,洗匀,再随机抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是( )
A.B.C.D.
2.如图所示,下列条件中能单独判断△ABC∽△ACD的个数是( )个.
①∠ABC=∠ACD;②∠ADC=∠ACB;③=;④AC2=AD•AB
A.1B.2C.3D.4
3.如图,直线与双曲线交于、两点,过点作轴,垂足为,连接,若,则的值是( )
A.2B.4C.-2D.-4
4.已知方程的两根为,则的值为( )
A.-1B.1C.2D.0
5.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是( )
A.20°B.35°C.40°D.55°
6.如图,AB是⊙O的弦(AB不是直径),以点A为圆心,以AB长为半径画弧交⊙O于点C,连结AC、BC、OB、OC.若∠ABC=65°,则∠BOC的度数是( )
A.50°B.65°C.100°D.130°
7.如果,那么的值为( )
A.B.C.D.
8.的值为( )
A.B.C.D.
9.甲、乙、丙、丁四人各进行了次射击测试,他们的平均成绩相同,方差分别是则射击成绩最稳定的是( )
A.甲B.乙C.丙D.丁
10.已知抛物线经过点,,若,是关于的一元二次方程的两个根,且,,则下列结论一定正确的是( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.计算_________.
12.已知线段、满足,则________.
13.如图,,,则的度数是__________.
14.若二次函数y=mx2+2x+1的图象与x轴有公共点,则m的取值范围是 _____.
15.已知,则的值为______.
16.代数式a2+a+3的值为7,则代数式2a2+2a-3的值为________.
17.已知△ABC 与△DEF 相似,相似比为 2:3,如果△ABC 的面积为 4,则△DEF 的面积为_____.
18.小燕抛一枚硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为_________.
三、解答题(共66分)
19.(10分)已知在平面直角坐标系xOy中,抛物线(b为常数)的对称轴是直线x=1.
(1)求该抛物线的表达式;
(2)点A(8,m)在该抛物线上,它关于该抛物线对称轴对称的点为A',求点A'的坐标;
(3)选取适当的数据填入下表,并在如图5所示的平面直角坐标系内描点,画出该抛物线.
20.(6分)在平面直角坐标系中,抛物线与轴的交点为A,B(点A 在点B的左侧).
(1)求点A,B的坐标;
(2)横、纵坐标都是整数的点叫整点.
①直接写出线段AB上整点的个数;
②将抛物线沿翻折,得到新抛物线,直接写出新抛物线在轴上方的部分与线段所围成的区域内(包括边界)整点的个数.
21.(6分)如图,四边形内接于⊙,是⊙的直径,,垂足为,平分.
(1)求证:是⊙的切线;
(2),,求的长.
22.(8分)已知关于x的一元二次方程x2+2x+m=1.
(1)当m=3时,判断方程的根的情况;
(2)当m=﹣3时,求方程的根.
23.(8分)某公司研发了一款成本为50元的新型玩具,投放市场进行试销售.其销售单价不低于成本,按照物价部门规定,销售利润率不高于90%,市场调研发现,在一段时间内,每天销售数量y(个)与销售单价x(元)符合一次函数关系,如图所示:
(1)根据图象,直接写出y与x的函数关系式;
(2)该公司要想每天获得3000元的销售利润,销售单价应定为多少元
(3)销售单价为多少元时,每天获得的利润最大,最大利润是多少元?
24.(8分)解方程:
(1)x2-4x+1=0 (2)x2+3x-4=0
25.(10分)(2011四川泸州,23,6分)甲口袋中装有两个相同的小球,它们的标号分别为2和7,乙口袋中装有两个相同的小球,它们的标号分别为4和5,丙口袋中装有三个相同的小球,它们的标号分别为3,8,1.从这3个口袋中各随机地取出1个小球.
(1)求取出的3个小球的标号全是奇数的概率是多少?
(2)以取出的三个小球的标号分别表示三条线段的长度,求这些线段能构成三角形的概率.
26.(10分)垃圾分类是必须要落实的国家政策,环卫部门要求垃圾要按可回收物,有害垃圾,餐厨垃圾,其它垃圾四类分别装袋,投放.甲投放了一袋垃圾,乙投放了两袋垃圾(两袋垃圾不同类).
(1)直接写出甲投放的垃圾恰好是类垃圾的概率;
(2)用树状图求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、C
3、A
4、D
5、B
6、C
7、C
8、C
9、C
10、C
二、填空题(每小题3分,共24分)
11、
12、
13、
14、m≤1且m≠1.
15、
16、3
17、1
18、
三、解答题(共66分)
19、(1);(2)(-6,49);(3)答案见解析.
20、(1)点A的坐标为(-1,0),点B的坐标为(3,0)(2)①5;②6.
21、(1)见解析;(2)
22、(1)原方程无实数根.
(2)x1=1,x2=﹣3.
23、(1)y=﹣2x+260;(2)销售单价为80元;(3)销售单价为90元时,每天获得的利润最大,最大利润是3200元.
24、(1)x1=+2,x2=-+2 (2)x1=-4,x2=1
25、解:(1);(2).
26、 (1) ; (2)乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.
相关试卷
这是一份2023-2024学年广西钦州市钦南区九上数学期末联考模拟试题含答案,共8页。试卷主要包含了在中,,,则的值是等内容,欢迎下载使用。
这是一份广西贺州市昭平县2023-2024学年数学九上期末联考试题含答案,共7页。试卷主要包含了下列事件中,属于必然事件的是等内容,欢迎下载使用。
这是一份2023-2024学年广西贺州昭平县联考数学八上期末质量跟踪监视试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。