2022届广西贺州昭平县联考中考数学全真模拟试卷含解析
展开
这是一份2022届广西贺州昭平县联考中考数学全真模拟试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=9,BC=3,试求以折痕EF为边长的正方形面积( )
A.11 B.10 C.9 D.16
2.计算(ab2)3的结果是( )
A.ab5 B.ab6 C.a3b5 D.a3b6
3.如图是棋盘的一部分,建立适当的平面直角坐标系,已知棋子“车”的坐标为(-2,1),棋子“马”的坐标为(3,-1),则棋子“炮”的坐标为( )
A.(1,1) B.(2,1) C.(2,2) D.(3,1)
4.如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于( )
A.25:24 B.16:15 C.5:4 D.4:3
5.在Rt△ABC中,∠C=90°,AC=5,AB=13,则sinA的值为( )
A. B. C. D.
6.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是( )
A.30,28 B.26,26 C.31,30 D.26,22
7.如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为( )
A.65° B.60°
C.55° D.45°
8.如图,点从矩形的顶点出发,沿以的速度匀速运动到点,图是点运动时,的面积随运动时间变化而变化的函数关系图象,则矩形的面积为( )
A. B. C. D.
9.如图,在6×4的正方形网格中,△ABC的顶点均为格点,则sin∠ACB=( )
A. B.2 C. D.
10.下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是( )
A.y=3x2+2 B.y=3(x﹣1)2 C.y=3(x﹣1)2+2 D.y=2x2
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,ABCD是菱形,AC是对角线,点E是AB的中点,过点E作对角线AC的垂线,垂足是点M,交AD边于点F,连结DM.若∠BAD=120°,AE=2,则DM=__.
12.已知抛物线y=x2﹣x+3与y轴相交于点M,其顶点为N,平移该抛物线,使点M平移后的对应点M′与点N重合,则平移后的抛物线的解析式为_____.
13.已知二次函数,与的部分对应值如下表所示:
…
-1
0
1
2
3
4
…
…
6
1
-2
-3
-2
m
…
下面有四个论断:
①抛物线的顶点为;
②;
③关于的方程的解为;
④.
其中,正确的有___________________.
14.将直线y=x沿y轴向上平移2个单位长度后,所得直线的函数表达式为_________,这两条直线间的距离为_____.
15.将一张长方形纸片折叠成如图所示的形状,若∠DBC=56°,则∠1=_____°.
16.已知△ABC中,AB=6,AC=BC=5,将△ABC折叠,使点A落在BC边上的点D处,折痕为EF(点E.F分别在边AB、AC上).当以B.E.D为顶点的三角形与△DEF相似时,BE的长为_____.
三、解答题(共8题,共72分)
17.(8分)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.
(Ⅰ)△ABC的面积等于_____;
(Ⅱ)若四边形DEFG是正方形,且点D,E在边CA上,点F在边AB上,点G在边BC上,请在如图所示的网格中,用无刻度的直尺,画出点E,点G,并简要说明点E,点G的位置是如何找到的(不要求证明)_____.
18.(8分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B款运动鞋的销售量是A款的,则1月份B款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价×销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.
19.(8分)如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.
(1)求证:DE=DB:
(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;
(3)若BD=6,DF=4,求AD的长
20.(8分)如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.
21.(8分)图中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上
(1)画出将△ABC绕点B按逆时针方向旋转90°后所得到的△A1BC1;
(2)画出将△ABC向右平移6个单位后得到的△A2B2C2;
(3)在(1)中,求在旋转过程中△ABC扫过的面积.
22.(10分)如图,在平行四边形ABCD中,E、F分别在AD、BC边上,且AE=CF.求证:四边形BFDE是平行四边形.
23.(12分)如图,抛物线(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.
求抛物线的解析式;抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.
24.某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m,200m,分别用、、表示;田赛项目:跳远,跳高分别用、表示.
该同学从5个项目中任选一个,恰好是田赛项目的概率为______;
该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.
【详解】
如图,∵四边形ABCD是矩形,
∴AD=BC,∠D=∠B=90°,
根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,
∴HC=BC,∠H=∠B,
又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,
∴∠HCE=∠BCF,
在△EHC和△FBC中,
∵,
∴△EHC≌△FBC,
∴BF=HE,
∴BF=HE=DE,
设BF=EH=DE=x,
则AF=CF=9﹣x,
在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,
解得:x=4,即DE=EH=BF=4,
则AG=DE=EH=BF=4,
∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,
∴EF2=EG2+GF2=32+12=10,
故选B.
【点睛】
本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键.
2、D
【解析】
试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可.
试题解析:(ab2)3=a3•(b2)3=a3b1.
故选D.
考点:幂的乘方与积的乘方.
3、B
【解析】
直接利用已知点坐标建立平面直角坐标系进而得出答案.
【详解】
解:根据棋子“车”的坐标为(-2,1),建立如下平面直角坐标系:
∴棋子“炮”的坐标为(2,1),
故答案为:B.
【点睛】
本题考查了坐标确定位置,正确建立平面直角坐标系是解题的关键.
4、A
【解析】
先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面积公式即可解答.
【详解】
∵∠1=∠2,∠3=∠4,
∴∠2+∠3=90°,
∴∠HEF=90°,
同理四边形EFGH的其它内角都是90°,
∴四边形EFGH是矩形,
∴EH=FG(矩形的对边相等),
又∵∠1+∠4=90°,∠4+∠5=90°,
∴∠1=∠5(等量代换),
同理∠5=∠7=∠8,
∴∠1=∠8,
∴Rt△AHE≌Rt△CFG,
∴AH=CF=FN,
又∵HD=HN,
∴AD=HF,
在Rt△HEF中,EH=3,EF=4,根据勾股定理得HF==5,
又∵HE•EF=HF•EM,
∴EM=,
又∵AE=EM=EB(折叠后A、B都落在M点上),
∴AB=2EM=,
∴AD:AB=5:==25:1.
故选A
【点睛】
本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.
5、C
【解析】
先根据勾股定理求出BC得长,再根据锐角三角函数正弦的定义解答即可.
【详解】
如图,根据勾股定理得,BC==12,
∴sinA=.
故选C.
【点睛】
本题考查了锐角三角函数的定义及勾股定理,熟知锐角三角函数正弦的定义是解决问题的关键.
6、B.
【解析】
试题分析:由图可知,把7个数据从小到大排列为22,22,23,1,28,30,31,中位数是第4位数,第4位是1,所以中位数是1.平均数是(22×2+23+1+28+30+31)÷7=1,所以平均数是1.故选B.
考点:中位数;加权平均数.
7、A
【解析】
根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.
【详解】
由题意可得:MN是AC的垂直平分线,
则AD=DC,故∠C=∠DAC,
∵∠C=30°,
∴∠DAC=30°,
∵∠B=55°,
∴∠BAC=95°,
∴∠BAD=∠BAC-∠CAD=65°,
故选A.
【点睛】
此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.
8、C
【解析】
由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,根据矩形的面积公式可求出.
【详解】
由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,
∴矩形的面积为4×8=32,
故选:C.
【点睛】
本题考查动点运动问题、矩形面积等知识,根据图形理解△ABP面积变化情况是解题的关键,属于中考常考题型.
9、C
【解析】
如图,由图可知BD=2、CD=1、BC=,根据sin∠BCA=可得答案.
【详解】
解:如图所示,
∵BD=2、CD=1,
∴BC===,
则sin∠BCA===,
故选C.
【点睛】
本题主要考查解直角三角形,解题的关键是熟练掌握正弦函数的定义和勾股定理.
10、D
【解析】
分析:根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解:
A、y=3x2的图象向上平移2个单位得到y=3x2+2,故本选项错误;
B、y=3x2的图象向右平移1个单位得到y=3(x﹣1)2,故本选项错误;
C、y=3x2的图象向右平移1个单位,向上平移2个单位得到y=3(x﹣1)2+2,故本选项错误;
D、y=3x2的图象平移不能得到y=2x2,故本选项正确.
故选D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、.
【解析】
作辅助线,构建直角△DMN,先根据菱形的性质得:∠DAC=60°,AE=AF=2,也知菱形的边长为4,利用勾股定理求MN和DN的长,从而计算DM的长.
【详解】
解:过M作MN⊥AD于N,
∵四边形ABCD是菱形,
∴
∵EF⊥AC,
∴AE=AF=2,∠AFM=30°,
∴AM=1,
Rt△AMN中,∠AMN=30°,
∴
∵AD=AB=2AE=4,
∴
由勾股定理得:
故答案为
【点睛】
本题主要考查了菱形的性质,等腰三角形的性质,勾股定理及直角三角形30度角的性质,熟练掌握直角三角形中30°所对的直角边是斜边的一半.
12、y=(x﹣1)2+
【解析】
直接利用抛物线与坐标轴交点求法结合顶点坐标求法分别得出M、N点坐标,进而得出平移方向和距离,即可得出平移后解析式.
【详解】
解:y=x2-x+3=(x-)2+,
∴N点坐标为:(,),
令x=0,则y=3,
∴M点的坐标是(0,3).
∵平移该抛物线,使点M平移后的对应点M′与点N重合,
∴抛物线向下平移个单位长度,再向右平移个单位长度即可,
∴平移后的解析式为:y=(x-1)2+.
故答案是:y=(x-1)2+.
【点睛】
此题主要考查了抛物线与坐标轴交点求法以及二次函数的平移,正确得出平移方向和距离是解题关键.
13、①③.
【解析】
根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.
【详解】
由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:
该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;
①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;
②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;
③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;
④m=﹣3,结论错误,
其中,正确的有. ①③
故答案为:①③
【点睛】
本题考查了二次函数的图像,结合图表信息是解题的关键.
14、y=x+1
【解析】
已知直线 y=x 沿y 轴向上平移1 个单位长度,根据一次函数图象的平移规律即可求得平移后的解析式为y=x+1.再利用等面积法求得这两条直线间的距离即可.
【详解】
∵直线 y=x 沿y轴向上平移1个单位长度,
∴所得直线的函数关系式为:y=x+1.
∴A(0,1),B(1,0),
∴AB=1,
过点 O 作 OF⊥AB 于点 F,
则AB•OF=OA•OB,
∴OF=,
即这两条直线间的距离为.
故答案为y=x+1,.
【点睛】
本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时 k 不变,当向上平移m个单位,则平移后直线的解析式为 y=kx+b+m.
15、62
【解析】
根据折叠的性质得出∠2=∠ABD,利用平角的定义解答即可.
【详解】
解:如图所示:
由折叠可得:∠2=∠ABD,
∵∠DBC=56°,
∴∠2+∠ABD+56°=180°,
解得:∠2=62°,
∵AE//BC,
∴∠1=∠2=62°,
故答案为62.
【点睛】
本题考查了折叠变换的知识以及平行线的性质的运用,根据折叠的性质得出∠2=∠ABD是关键.
16、3或
【解析】
以B.E.D为顶点的三角形与△DEF相似分两种情形画图分别求解即可.
【详解】
如图作CM⊥AB
当∠FED=∠EDB时,∵∠B=∠EAF=∠EDF
∴△EDF~△DBE
∴EF∥CB,设EF交AD于点O
∵AO=OD,OE∥BD
∴AE= EB=3
当∠FED=∠DEB时则
∠FED=∠FEA=∠DEB=60°
此时△FED~△DEB,设AE=ED=x,作
DN⊥AB于N,
则EN=,DN=,
∵DN∥CM,
∴
∴
∴x
∴BE=6-x=
故答案为3或
【点睛】
本题考察学生对相似三角形性质定理的掌握和应用,熟练掌握相似三角形性质定理是解答本题的关键,本题计算量比较大,计算能力也很关键.
三、解答题(共8题,共72分)
17、6 作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G
【解析】
(1)根据三角形面积公式即可求解,(2)作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G,过G点作GD⊥AC于D,四边形DEFG即为所求正方形.
【详解】
解:(1)4×3÷2=6,故△ABC的面积等于6.
(2)如图所示,作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G,四边形DEFG即为所求正方形.
故答案为:6,作出∠ACB的角平分线交AB于F,再过F点作FE⊥AC于E,作FG⊥BC于G.
【点睛】
本题主要考查了作图-应用与设计作图、三角形的面积以及正方形的性质、角平分线的性质,熟练掌握角平分线的性质及正方形的性质作出正确的图形是解本题的关键.
18、(1)1月份B款运动鞋销售了40双;(2)3月份的总销售额为39000元;(3)详见解析.
【解析】
试题分析:(1)用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出二元一次方程组,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可.
试题解析:(1)根据题意,用一月份A款的数量乘以:50×=40(双).即一月份B款运动鞋销售了40双;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据题意得:,解得:.则三月份的总销售额是:400×65+500×26=39000=3.9(万元);(3)从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销量大,建议多进A款运动鞋,少进或不进B款运动鞋.
考点:1.折线统计图;2.条形统计图.
19、(1)见解析;(2)2 (3)1
【解析】
(1)通过证明∠BED=∠DBE得到DB=DE;
(2)连接CD,如图,证明△DBC为等腰直角三角形得到BC=BD=4,从而得到△ABC外接圆的半径;
(3)证明△DBF∽△ADB,然后利用相似比求AD的长.
【详解】
(1)证明:∵AD平分∠BAC,BE平分∠ABD,
∴∠1=∠2,∠3=∠4,
∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,
∴DB=DE;
(2)解:连接CD,如图,
∵∠BAC=10°,
∴BC为直径,
∴∠BDC=10°,
∵∠1=∠2,
∴DB=BC,
∴△DBC为等腰直角三角形,
∴BC=BD=4,
∴△ABC外接圆的半径为2;
(3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,
∴△DBF∽△ADB,
∴=,即=,
∴AD=1.
【点睛】
本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和相似三角形的判定与性质.
20、见解析
【解析】
证明:∵DE∥AB,∴∠CAB=∠ADE.
在△ABC和△DAE中,∵,
∴△ABC≌△DAE(ASA).
∴BC=AE.
【点睛】
根据两直线平行,内错角相等求出∠CAB=∠ADE,然后利用“角边角”证明△ABC和△DAE全等,再根据全等三角形对应边相等证明即可.
21、(1)(1)如图所示见解析;(3)4π+1.
【解析】
(1)根据旋转的性质得出对应点位置,即可画出图形;
(1)利用平移的性质得出对应点位置,进而得出图形;
(3)根据△ABC扫过的面积等于扇形BCC1的面积与△A1BC1的面积和,列式进行计算即可.
【详解】
(1)如图所示,△A1BC1即为所求;
(1)如图所示,△A1B1C1即为所求;
(3)由题可得,△ABC扫过的面积==4π+1.
【点睛】
考查了利用旋转变换依据平移变换作图,熟练掌握网格结构,准确找出对应点位置作出图形是解题的关键.求扫过的面积的主要思路是将不规则图形面积转化为规则图形的面积.
22、证明见解析
【解析】
∵四边形ABCD是平行四边形,
∴AD//BC,AD=BC,
∵AE=CF
∴AD-AE=BC-CF
即DE=BF
∴四边形BFDE是平行四边形.
23、(1)抛物线的解析式为;(2)PM=(0<m<3);(3)存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.
【解析】
(1)将A(3,0),C(0,4)代入,运用待定系数法即可求出抛物线的解析式.
(2)先根据A、C的坐标,用待定系数法求出直线AC的解析式,从而根据抛物线和直线AC的解析式分别表示出点P、点M的坐标,即可得到PM的长.
(3)由于∠PFC和∠AEM都是直角,F和E对应,则若以P、C、F为顶点的三角形和△AEM相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m的代数式表示出AE、EM、CF、PF的长,根据相似三角形对应边的比相等列出比例式,求出m的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM的形状.
【详解】
解:(1)∵抛物线(a≠0)经过点A(3,0),点C(0,4),
∴,解得.
∴抛物线的解析式为.
(2)设直线AC的解析式为y=kx+b,
∵A(3,0),点C(0,4),
∴,解得.
∴直线AC的解析式为.
∵点M的横坐标为m,点M在AC上,
∴M点的坐标为(m,).
∵点P的横坐标为m,点P在抛物线上,
∴点P的坐标为(m,).
∴PM=PE-ME=()-()=.
∴PM=(0<m<3).
(3)在(2)的条件下,连接PC,在CD上方的抛物线部分存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似.理由如下:
由题意,可得AE=3﹣m,EM=,CF=m,PF==,
若以P、C、F为顶点的三角形和△AEM相似,分两种情况:
①若△PFC∽△AEM,则PF:AE=FC:EM,即():(3-m)=m:(),
∵m≠0且m≠3,∴m=.
∵△PFC∽△AEM,∴∠PCF=∠AME.
∵∠AME=∠CMF,∴∠PCF=∠CMF.
在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.
∴△PCM为直角三角形.
②若△CFP∽△AEM,则CF:AE=PF:EM,即m:(3-m)=():(),
∵m≠0且m≠3,∴m=1.
∵△CFP∽△AEM,∴∠CPF=∠AME.
∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.
∴△PCM为等腰三角形.
综上所述,存在这样的点P使△PFC与△AEM相似.此时m的值为或1,△PCM为直角三角形或等腰三角形.
24、 (1);(2).
【解析】
(1)由5个项目中田赛项目有2个,直接利用概率公式求解即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好是一个田赛项目和一个径赛项目的情况,再利用概率公式即可求得答案.
【详解】
(1)∵5个项目中田赛项目有2个,∴该同学从5个项目中任选一个,恰好是田赛项目的概率为:.
故答案为;
(2)画树状图得:
∵共有20种等可能的结果,恰好是一个田赛项目和一个径赛项目的有12种情况,∴恰好是一个田赛项目和一个径赛项目的概率为:.
【点睛】
本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
相关试卷
这是一份2023年广西贺州市昭平县中考数学二模试卷(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年广西贺州市昭平县中考数学三模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份广西贺州市昭平县市级名校2022年中考数学模拟精编试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,关于x的不等式组的所有整数解是,二次函数y=ax1+bx+c等内容,欢迎下载使用。