2023-2024学年广东省茂名市茂南区数学九年级第一学期期末教学质量检测试题含答案
展开
这是一份2023-2024学年广东省茂名市茂南区数学九年级第一学期期末教学质量检测试题含答案,共8页。试卷主要包含了按下面的程序计算等内容,欢迎下载使用。
学校_______ 年级_______ 姓名_______
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题3分,共30分)
1.关于x的一元二次方程x2+bx﹣10=0的一个根为2,则b的值为( )
A.1B.2C.3D.7
2.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知,则球的半径长是( )
A.2B.2.5C.3D.4
3.下列各式中属于最简二次根式的是( )
A.B.C.D.
4.小华同学的身高为米,某一时刻他在阳光下的影长为米,与他邻近的一棵树的影长为米,则这棵树的高为( )
A.米B.米C.米D.米
5.如图直线y=mx与双曲线y=交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是( )
A.1B.2C.3D.4
6.按下面的程序计算:
若开始输入的值为正整数,最后输出的结果为,则开始输入的值可以为( )
A.B.C.D.
7.如图,四边形是扇形的内接矩形,顶点P在弧上,且不与M,N重合,当P点在弧上移动时,矩形的形状、大小随之变化,则的长度( )
A.变大B.变小C.不变D.不能确定
8.如图,在ABCD中,∠DAB=10°,AB=8,AD=1.⊙O分别切边AB,AD于点E,F,且圆心O好落在DE上.现将⊙O沿AB方向滚动到与BC边相切(点O在ABCD的内部),则圆心O移动的路径长为( )
A.2B.4C.5﹣D.8﹣2
9.13名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前6名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这13名同学成绩的( )
A.方差B.众数C.平均数D.中位数
10.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n、m的大矩形,则图中阴影部分的周长是( )
A.6(m﹣n)B.3(m+n)C.4nD.4m
二、填空题(每小题3分,共24分)
11.如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B的仰角45°,然后沿着坡度为1:的坡面AD走了200米到D处,此时在D处测得山顶B的仰角为60°,则山高BC=_____米(结果保留根号).
12.如图,在平面直角坐标系中,四边形和四边形都是正方形,点在轴的正半轴上,点在边上,反比例函数的图象过点、.若,则的值为_____.
13.某水果公司以1.1元/千克的成本价购进苹果.公司想知道苹果的损坏率,从所有苹果中随机抽取若干进行统计,部分数据如下:
估计这批苹果损坏的概率为______精确到0.1),据此,若公司希望这批苹果能获得利润13000元,则销售时(去掉损坏的苹果)售价应至少定为______元/千克.
14.如图,,与相交于点,若,,则的值是_______.
15.如图,在平面直角坐标系中,已知A(1.5,0),D(4.5,0),△ABC与△DEF位似,原点O是位似中心.若DE=7.5,则AB=_____.
16.已知二次函数的部分图象如图所示,则一元二次方程的解为:_____.
17.一枚质地均匀的正方体骰子,其六个面上分别刻有1、2、3、4、5、6六个数字,投掷这个骰子一次,则向上一面的数字小于3的概率是__________.
18.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意摸取一只,恰好两只手套凑成同一双的概率为__________.
三、解答题(共66分)
19.(10分)某商业银行为提高存款额,经过最近的两次提高利息,使一年期存款的年利率由1.96%提高至2.25%,平均每次增加利息的百分率是多少?(结果写成a%的形式,其中a保留小数点后两位)
20.(6分)文物探测队探测出某建筑物下面埋有文物,为了准确测出文物所在的深度,他们在文物上方建筑物的一侧地面上相距米的两处,用仪器测文物,探测线与地面的夹角分别是和, 求该文物所在位置的深度(精确到米) .
21.(6分)如图①,四边形是边长为2的正方形,,四边形是边长为的正方形,点分别在边上,此时,成立.
(1)当正方形绕点逆时针旋转,如图②,成立吗?若成立,请证明;若不成立,请说明理由;
(2)当正方形绕点逆时针旋转(任意角)时,仍成立吗?直接回答;
(3)连接,当正方形绕点逆时针旋转时,是否存在∥,若存在,请求出的值;若不存在,请说明理由.
22.(8分)函数与函数(、为不等于零的常数)的图像有一个公共点,其中正比例函数的值随的值增大而减小,求这两个函数的解析式.
23.(8分)如图,在中,,,为外一点,将绕点按顺时针方向旋转得到,且点、、三点在同一直线上.
(1)(观察猜想)
在图①中, ;在图②中, (用含的代数式表示)
(2)(类比探究)
如图③,若,请补全图形,再过点作于点,探究线段,,之间的数量关系,并证明你的结论;
(3)(问题解决)
若,,,求点到的距离.
24.(8分)一个不透明的口袋里装有分别标有汉字“魅”、“力”、“宜”、“昌”的四个个球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.
(1)若从中任取一个球,球上的汉字刚好是“宜”的概率为多少?
(2)甲同学从中任取一球,记下汉字后放回袋中,然后再从袋中任取一球,请用画树图成列表的方法求出甲同学取出的两个球上的汉字恰能组成“魅力”或“宜昌”的概率p甲;
(3)乙同学从中任取一球,不放回,再从袋中任取一球,请求出乙同学取出的两个球上的汉字恰能组成“魅力”或“宜昌”的概率p乙,并指出p甲、p乙的大小关系.
25.(10分)学生会组织周末爱心义卖活动,义卖所得利润将全部捐献给希望工程,活动选在一块长米、宽米的矩形空地上.如图,空地被划分出个矩形区域,分别摆放不同类别的商品,区域之间用宽度相等的小路隔开,已知每个区域的面积均为平方米,小路的宽应为多少米?
26.(10分)在Rt△ABC中,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转一定的角度得到△AED,点B、C的对应点分别是E、D.
(1)如图1,当点E恰好在AC上时,求∠CDE的度数;
(2)如图2,若=60°时,点F是边AC中点,求证:四边形BFDE是平行四边形.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、B
3、A
4、B
5、B
6、B
7、C
8、B
9、D
10、D
二、填空题(每小题3分,共24分)
11、300+100
12、
13、0.2 3
14、
15、2.1.
16、
17、
18、
三、解答题(共66分)
19、平均每次增加利息的百分率约为7.14%
20、17.3米
21、(1)成立,证明见解析;(2)结论仍成立;(3)存在,
22、,
23、(1);;(2),证明见解析;(3)点到的距离为或.
24、(1);(2);(3) .
25、小路的宽应为米.
26、(1)15°;(2)证明见解析.
苹果损坏的频率
0.106
0.097
0.101
0.098
0.099
0.101
相关试卷
这是一份2023-2024学年广东省茂名市茂南区博雅中学九年级(上)期末数学试卷(含解析),共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023-2024学年广东省茂名市数学八年级第一学期期末教学质量检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁,计算的结果是,若要使等式成立,则等于等内容,欢迎下载使用。
这是一份广东省茂名市茂南区2023-2024学年数学八上期末监测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。